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Uniformity Testing

Definition

Given n samples from a discrete distribution q on [m], determine whether
q is the uniform distribution u, or ε-far from u in TV distance, with
probability 1− δ

• First introduced by Goldreich and Ron in the context of testing
whether a bounded-degree regular graph is an expander

• Is used as a basic building block for identity testing

• Very well-studied [Goldreich and Ron, 2011; Batu, Fischer, Fortnow,
Kumar, Rubinfeld, White, 2000; Paninski, 2008; Diakonikolas,
Gouleakis, Peebles, Price, 2018; Diakonikolas, Gouleakis, Peebles,
Price, 2019] various testers (collisions, TV, singleton) considered in
the literature, matching upper and lower bounds known [DGPP18].
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Motivation

Question

How fast could the Polish lottery error be detected?
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Notation

• n is the number of samples

• m is the domain of the distribution

• Let Yj be the number of samples drawn that are equal to j .

1 2 3 4
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Strategy

• Compute some test statistic S =
∑m

j=1 f (Yj). All existing statistics
are of this form.

• Accept if S ≤ τ , and reject otherwise, for some threshold τ .

δ δ

S on uniform q τ S on non-uniform q

Statistic

D
en

si
ty
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Sample Complexity Intuition

• Need Ω
(
m
ε2

)
samples to learn the distribution

• Birthday paradox tells us that under the uniform distribution, we will
start to see collisions after O(

√
m) samples

• Should see more collisions under any ε-far distribution
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Overview of Existing Results

Tester Test Statistic Sample Complexity Notes

Collisions
∑m

j=1

(Yj

2

)
Θ
(√

m
ε2

log 1
δ

)
[BFR+00, GR11, DGPP19]

Singletons
∑m

j=1 1Yj=1 Θ

(√
m log 1

δ

ε2

)
[Pan08], when n = o(m)

TV
∥∥Y
m − u

∥∥
TV

Θ

(√
m log 1

δ

ε2
+

log 1
δ

ε2

)
[DGPP18]

Table: Existing Testers

• There is a lower bound that matches the sample complexity of the
TV tester (up to constants) [DGPP18].

These results suggest that one should use the TV tester in practice
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Empirical Study

Expected value
uniform

Expected value
non-uniform

Statistic
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Approximate PDF of TV and Collisions Tester

TV, uniform
TV, nonuniform
Collisions, uniform
Collisions, nonuniform
Threshold

(a) The collisions tester has 1.7% error
rate and the TV tester has 3.3%.
(m = n = 10000 and ε = 0.125)

Expected value
uniform

Expected value
non-uniform

Statistic

D
en

si
ty

Approximate PDF of TV and Collisions Tester

TV, uniform
TV, nonuniform
Collisions, uniform
Collisions, nonuniform
Threshold

(b) The collisions tester has 10−5 error
rate and the TV tester has 10−4.
(m = n = 105 and ε = 0.1)

Figure: Observed performance of TV vs collisions

• Theory: TV Tester optimal, Collisions tester asymptotically bad in δ

• Practice: Collisions tester is better, even for tiny δ
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What’s going on?

S =
m∑
j=1

f (Yj)

Expected value
uniform

Expected value
non-uniform

Statistic

D
en

si
ty

Approximate PDF of TV and Collisions Tester

TV, uniform
TV, nonuniform
Collisions, uniform
Collisions, nonuniform
Threshold

• The distribution looks Gaussian, since Yj are mostly independent

• If it were Gaussian, all that matters is the variance (after normalizing
the expectation gap)
• We show that the collisions statistic optimizes this, while TV has 44%

larger variance when n = m→∞.

Theorem (informal)

The collisions statistic has minimum variance over all separable statistics.

• The collisions statistic actually has exponential tails when you go far
enough away from the mean
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Overview of Results

• The sample complexity of a tester can be expressed as

n = (C + o(1))

√
m log 1

δ

ε2
+ O

(
log 1

δ

ε2

)

Regime Dominant Term

Sublinear

√
m log 1

δ

ε2

Superlinear
log 1

δ

ε2

Table: Regimes

• We will focus on the sublinear regime in this talk
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Overview of Results

O(1) Ω(n) n O(n) o(n2)

O(1)

Ω̃
(

1
n1/4

)

1
n1/2

// //

n
=

Θ (
mε 2 )

n 2
ε 4m

=
ω(1), a.k.a. δ =

o(1)ε = o(1)

Superlinear
regime

Impossible
regime

Sublinear
regime

m

ε

Comparing collisions and TV testers

Figure: The constant C in different (n, ε, δ) parameter regimes.

Box with some content
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Overview of Results

O(1) Ω(n) n O(n) o(n2)

O(1)

log1/4 n
n1/8
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(
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n
=
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Impossible
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Comparing collisions and TV testers

TV has C = 1
Collisions has C = 1

TV has C > 1
Collisions has C � 1

Figure: The constant C in different (n, ε, δ) parameter regimes.

In region A, the collisions tester performs better than the TV tester. In
region B, both the collisions and TV tester have C > 1. When n = m,
C ≈ 1.2 for the TV tester.
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Huber statistic

S =
∑
j

f (Yj)

Statistic Variance Tails

Collisions Optimal Heavy

TV Suboptimal Gaussian

Huber Optimal Gaussian

Quadratic (collisions)
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Overview of Results

O(log n) Θ(n) o(n2)

O(1)

1
n1/2

n
=

Θ (
m
ε 2 )

n 2
ε 4m

=
ω(1), a.k.a. δ =

o(1)

ε = o(1)

Superlinear
regime

Sublinear
regime

Impossible
regime

m

ε

Best upper bounds

Huber has C = 1
Singletons has C = 1

The Huber statistic achieves the best constant over the Sublinear regime
when ε = o(1). It matches the Gaussian approximation to the test
statistic with optimal variance.
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Analysis

• Recap: For a statistic S =
∑m

j=1 f (Yj), we need to understand the
false negative probability under uniform distribution u

δ− := Pr
u

[S ≥ τ ]

MGF Poissonization Depoissonization Chernoff
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Analysis - Computing the MGF

MGF Poissonization Depoissonization Chernoff

• We want to analyze the MGF given by

MS(t) = E[exp (tS)] = E

 m∏
j=1

exp (t · f (Yj))


• Since the Yj ’s are not independent, the expectation and product

cannot be interchanged, and this is difficult to compute
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Analysis - Poissonization

MGF Poissonization Depoissonization Chernoff

• To overcome this problem, let SPoi(λ) be the Poissonized statistic, i.e.,
statistic S with the number of samples sampled from Poi(λ). Let
Z ∼ Poi(λ) be the number of samples sampled

• Its MGF is given by

Aλ(t) := E[exp(t · SPoi(λ))]

This turns out to be easy to compute
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Analysis - Depoissonization

MGF Poissonization Depoissonization Chernoff

• Unfortunately, the Poissonized statistic does not concentrate as well

Aλ(t) = E[exp(t · SPoi(λ))] =
∞∑
k=0

e−λλk

k!
E[exp(t · SPoi(λ))|Z = k]

• Here, since (SPoi(λ)|Z = n) is precisely our original statistic S , the

coefficient of λn in eλAλ(t) is

1

n!
MS(t)

• For the statistics we analyze, Aλ(t) is holomorphic in λ, and so, we
can compute MS using Cauchy’s integral formula:

MS(t) =
n!

2πi

∮
eλAλ(t)

dλ

λn+1
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Analysis - Chernoff Bound

MGF Poissonization Depoissonization Chernoff

• Once we have the MGF, Chernoff-type arguments imply

δ− < inf
t≥0

MS(t)

etτ

• We have focused on the false negative case in this talk. The false
positive case is similar, but makes use of tools from [DGPP18] to
restrict the class of alternative distributions
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Formal Theorem

Huber Theorem

The Huber statistic for n/m� 1/ε2, ε, δ � 1, and m ≥ C log n for
sufficiently large constant C achieves sample complexity

n = (1 + o(1))
1

ε2

√
m log

1

δ

O(log n) Θ(n) o(n2)

O(1)

1
n1/2

n
=

Θ (
m
ε 2 )

n 2
ε 4m

=
ω(1), a.k.a. δ =

o(1)

ε = o(1)

Superlinear
regime

Sublinear
regime

Impossible
regime

m

ε

Best upper bounds

Huber has C = 1
Singletons has C = 1
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Experimental Results
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When n = m = (0.7/ε)8.1 →∞, we expect δ → 0

Collisions

TV

Huber

Figure: The Huber tester performs better than existing testers in practice
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Summary

• Analyzing constant factors gives better understanding of actual
performance

• Collisions tester has optimal variance of any statistic

• Huber tester combines optimal variance with good tails
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