Sharp Constants in Uniformity Testing via the Huber Statistic

Shivam Gupta (UT Austin), Eric Price (UT Austin)

July 18, 2023

Uniformity Testing

Definition

Given *n* samples from a discrete distribution *q* on [*m*], determine whether *q* is the uniform distribution *u*, or ε -far from *u* in *TV* distance, with probability $1 - \delta$

Definition

Given *n* samples from a discrete distribution *q* on [*m*], determine whether *q* is the uniform distribution *u*, or ε -far from *u* in *TV* distance, with probability $1 - \delta$

• First introduced by Goldreich and Ron in the context of testing whether a bounded-degree regular graph is an expander

Definition

Given *n* samples from a discrete distribution *q* on [*m*], determine whether *q* is the uniform distribution *u*, or ε -far from *u* in *TV* distance, with probability $1 - \delta$

- First introduced by Goldreich and Ron in the context of testing whether a bounded-degree regular graph is an expander
- Is used as a basic building block for identity testing

Definition

Given *n* samples from a discrete distribution *q* on [*m*], determine whether *q* is the uniform distribution *u*, or ε -far from *u* in *TV* distance, with probability $1 - \delta$

- First introduced by Goldreich and Ron in the context of testing whether a bounded-degree regular graph is an expander
- Is used as a basic building block for identity testing
- Very well-studied [Goldreich and Ron, 2011; Batu, Fischer, Fortnow, Kumar, Rubinfeld, White, 2000; Paninski, 2008; Diakonikolas, Gouleakis, Peebles, Price, 2018; Diakonikolas, Gouleakis, Peebles, Price, 2019] various testers (collisions, TV, singleton) considered in the literature, matching upper and lower bounds known [DGPP18].

Motivation

Motivation

Question

How fast could the Polish lottery error be detected?

Notation

• *n* is the number of samples

Notation

- *n* is the number of samples
- *m* is the domain of the distribution

Notation

- *n* is the number of samples
- *m* is the domain of the distribution
- Let Y_j be the number of samples drawn that are equal to j.

• Compute some test statistic $S = \sum_{j=1}^{m} f(Y_j)$. All existing statistics are of this form.

- Compute some test statistic $S = \sum_{j=1}^{m} f(Y_j)$. All existing statistics are of this form.
- Accept if $S \leq \tau$, and reject otherwise, for some threshold τ .

- Compute some test statistic $S = \sum_{j=1}^{m} f(Y_j)$. All existing statistics are of this form.
- Accept if $S \leq \tau$, and reject otherwise, for some threshold τ .

- Compute some test statistic $S = \sum_{j=1}^{m} f(Y_j)$. All existing statistics are of this form.
- Accept if $S \leq \tau$, and reject otherwise, for some threshold τ .

Sample Complexity Intuition

• Need $\Omega\left(\frac{m}{\epsilon^2}\right)$ samples to *learn* the distribution

- Need $\Omega\left(\frac{m}{\epsilon^2}\right)$ samples to *learn* the distribution
- Birthday paradox tells us that under the uniform distribution, we will start to see collisions after $O(\sqrt{m})$ samples

- Need $\Omega\left(\frac{m}{\epsilon^2}\right)$ samples to *learn* the distribution
- Birthday paradox tells us that under the uniform distribution, we will start to see collisions after $O(\sqrt{m})$ samples
- Should see more collisions under any ε -far distribution

Tester	Test Statistic	Sample Complexity	Notes
Collisions	$\sum_{j=1}^{m} \binom{Y_j}{2}$	$\Theta\left(rac{\sqrt{m}}{arepsilon^2}\lograc{1}{\delta} ight)$	[BFR ⁺ 00, GR11, DGPP19]
Singletons	$\sum_{j=1}^m \mathbb{1}_{Y_j=1}$	$\Theta\left(rac{\sqrt{m\lograc{1}{\delta}}}{arepsilon^2} ight)$	[Pan08], when $n = o(m)$
TV	$\left\ \frac{Y}{m}-u\right\ _{TV}$	$\Theta\left(\frac{\sqrt{m\log\frac{1}{\delta}}}{\varepsilon^2} + \frac{\log\frac{1}{\delta}}{\varepsilon^2}\right)$	[DGPP18]

Table: Existing Testers

Tester	Test Statistic	Sample Complexity	Notes
Collisions	$\sum_{j=1}^{m} \binom{Y_j}{2}$	$\Theta\left(rac{\sqrt{m}}{arepsilon^2}\lograc{1}{\delta} ight)$	[BFR ⁺ 00, GR11, DGPP19]
Singletons	$\sum_{j=1}^m \mathbb{1}_{Y_j=1}$	$\Theta\left(rac{\sqrt{m\lograc{1}{\delta}}}{arepsilon^2} ight)$	[Pan08], when $n = o(m)$
TV	$\left\ \frac{Y}{m}-u\right\ _{TV}$	$\Theta\left(\frac{\sqrt{m\log\frac{1}{\delta}}}{\varepsilon^2} + \frac{\log\frac{1}{\delta}}{\varepsilon^2}\right)$	[DGPP18]

Table: Existing Testers

• There is a lower bound that matches the sample complexity of the TV tester (up to constants) [DGPP18].

Tester	Test Statistic	Sample Complexity	Notes
Collisions	$\sum_{j=1}^{m} \binom{Y_j}{2}$	$\Theta\left(rac{\sqrt{m}}{arepsilon^2}\lograc{1}{\delta} ight)$	[BFR ⁺ 00, GR11, DGPP19]
Singletons	$\sum_{j=1}^m \mathbb{1}_{Y_j=1}$	$\Theta\left(rac{\sqrt{m\lograc{1}{\delta}}}{arepsilon^2} ight)$	[Pan08], when $n = o(m)$
TV	$\left\ \frac{Y}{m}-u\right\ _{TV}$	$\Theta\left(\frac{\sqrt{m\log\frac{1}{\delta}}}{\varepsilon^2} + \frac{\log\frac{1}{\delta}}{\varepsilon^2}\right)$	[DGPP18]

Table: Existing Testers

• There is a lower bound that matches the sample complexity of the TV tester (up to constants) [DGPP18].

These results suggest that one should use the TV tester in practice

Empirical Study

(a) The collisions tester has 1.7% error rate and the TV tester has 3.3%. $(m = n = 10000 \text{ and } \varepsilon = 0.125)$

(b) The collisions tester has 10^{-5} error rate and the TV tester has 10^{-4} . $(m = n = 10^5 \text{ and } \varepsilon = 0.1)$

Figure: Observed performance of TV vs collisions

Empirical Study

(a) The collisions tester has 1.7% error rate and the TV tester has 3.3%. (m = n = 10000 and $\varepsilon = 0.125$)

(b) The collisions tester has 10^{-5} error rate and the TV tester has 10^{-4} . $(m = n = 10^5 \text{ and } \varepsilon = 0.1)$

Figure: Observed performance of TV vs collisions

• Theory: TV Tester optimal, Collisions tester asymptotically bad in δ

Empirical Study

(b) The collisions tester has 10^{-5} error rate and the TV tester has 10^{-4} . $(m = n = 10^5 \text{ and } \varepsilon = 0.1)$

Figure: Observed performance of TV vs collisions

- Theory: TV Tester optimal, Collisions tester asymptotically bad in δ
- Practice: Collisions tester is better, even for tiny δ

• The distribution *looks* Gaussian, since Y_i are mostly independent

• The distribution *looks* Gaussian, since Y_j are mostly independent

• If it *were* Gaussian, all that matters is the variance (after normalizing the expectation gap)

- The distribution looks Gaussian, since Y_j are mostly independent
- If it *were* Gaussian, all that matters is the variance (after normalizing the expectation gap)
- We show that the collisions statistic optimizes this, while TV has 44% larger variance when $n = m \rightarrow \infty$.

• The distribution looks Gaussian, since Y_j are mostly independent

- If it *were* Gaussian, all that matters is the variance (after normalizing the expectation gap)
- We show that the collisions statistic optimizes this, while TV has 44% larger variance when $n = m \rightarrow \infty$.

Theorem (informal)

The collisions statistic has minimum variance over all separable statistics.

- The distribution looks Gaussian, since Y_j are mostly independent
- If it *were* Gaussian, all that matters is the variance (after normalizing the expectation gap)
- We show that the collisions statistic optimizes this, while TV has 44% larger variance when $n = m \rightarrow \infty$.

Theorem (informal)

The collisions statistic has minimum variance over all separable statistics.

• The collisions statistic actually has *exponential* tails when you go far enough away from the mean

• The sample complexity of a tester can be expressed as

$$n = (C + o(1)) rac{\sqrt{m \log rac{1}{\delta}}}{arepsilon^2} + O\left(rac{\log rac{1}{\delta}}{arepsilon^2}
ight)$$

• The sample complexity of a tester can be expressed as

$$n = (C + o(1)) rac{\sqrt{m \log rac{1}{\delta}}}{arepsilon^2} + O\left(rac{\log rac{1}{\delta}}{arepsilon^2}
ight)$$

Regime	Dominant Term
Sublinear	$rac{\sqrt{m\lograc{1}{\delta}}}{arepsilon^2}$
Superlinear	$\frac{\log \frac{1}{\delta}}{\varepsilon^2}$

Table: Regimes

• The sample complexity of a tester can be expressed as

$$n = (C + o(1)) rac{\sqrt{m \log rac{1}{\delta}}}{arepsilon^2} + O\left(rac{\log rac{1}{\delta}}{arepsilon^2}
ight)$$

Regime	Dominant Term
Sublinear	$rac{\sqrt{m\lograc{1}{\delta}}}{arepsilon^2}$
Superlinear	$\frac{\log \frac{1}{\delta}}{\varepsilon^2}$

Table: Regimes

• We will focus on the sublinear regime in this talk

Comparing collisions and TV testers

Figure: The constant C in different (n, ε, δ) parameter regimes.

Comparing collisions and TV testers

Figure: The constant C in different (n, ε, δ) parameter regimes.

In region **A**, the collisions tester performs better than the TV tester. In region **B**, both the collisions and TV tester have C > 1. When n = m, $C \approx 1.2$ for the TV tester.

The Huber statistic achieves the best constant over the Sublinear regime when $\varepsilon = o(1)$. It matches the Gaussian approximation to the test statistic with optimal variance.

• **Recap:** For a statistic $S = \sum_{j=1}^{m} f(Y_j)$, we need to understand the false negative probability under uniform distribution u

$$\delta_{-} := \Pr_{u}[S \ge \tau]$$

• **Recap:** For a statistic $S = \sum_{j=1}^{m} f(Y_j)$, we need to understand the false negative probability under uniform distribution u

$$\delta_{-} := \Pr_{u}[S \ge \tau]$$

Analysis - Computing the MGF

Analysis - Computing the MGF

• We want to analyze the MGF given by

$$M_{S}(t) = \mathbb{E}[\exp{(tS)}] = \mathbb{E}\left[\prod_{j=1}^{m} \exp{(t \cdot f(Y_{j}))}\right]$$

Analysis - Computing the MGF

• We want to analyze the MGF given by

$$M_{S}(t) = \mathbb{E}[\exp(tS)] = \mathbb{E}\left[\prod_{j=1}^{m} \exp(t \cdot f(Y_{j}))\right]$$

• Since the Y_j's are not independent, the expectation and product cannot be interchanged, and this is difficult to compute

To overcome this problem, let S_{Poi(λ)} be the Poissonized statistic, i.e., statistic S with the number of samples sampled from Poi(λ). Let Z ~ Poi(λ) be the number of samples sampled

- To overcome this problem, let S_{Poi(λ)} be the Poissonized statistic, i.e., statistic S with the number of samples sampled from Poi(λ). Let Z ~ Poi(λ) be the number of samples sampled
- Its MGF is given by

$$A_{\lambda}(t) := \mathbb{E}[\exp(t \cdot S_{Poi(\lambda)})]$$

This turns out to be easy to compute

• Unfortunately, the Poissonized statistic does not concentrate as well

• Unfortunately, the Poissonized statistic does not concentrate as well

$$A_{\lambda}(t) = \mathbb{E}[\exp(t \cdot S_{Poi(\lambda)})] = \sum_{k=0}^{\infty} \frac{e^{-\lambda}\lambda^{k}}{k!} \mathbb{E}[\exp(t \cdot S_{Poi(\lambda)})|Z = k]$$

• Unfortunately, the Poissonized statistic does not concentrate as well

$$A_{\lambda}(t) = \mathbb{E}[\exp(t \cdot S_{Poi(\lambda)})] = \sum_{k=0}^{\infty} \frac{e^{-\lambda}\lambda^{k}}{k!} \mathbb{E}[\exp(t \cdot S_{Poi(\lambda)})|Z = k]$$

Here, since (S_{Poi(λ)}|Z = n) is precisely our original statistic S, the coefficient of λⁿ in e^λA_λ(t) is

$$\frac{1}{n!}M_S(t)$$

• Unfortunately, the Poissonized statistic does not concentrate as well

$$A_{\lambda}(t) = \mathbb{E}[\exp(t \cdot S_{Poi(\lambda)})] = \sum_{k=0}^{\infty} \frac{e^{-\lambda}\lambda^{k}}{k!} \mathbb{E}[\exp(t \cdot S_{Poi(\lambda)})|Z = k]$$

• Here, since $(S_{Poi(\lambda)}|Z = n)$ is precisely our original statistic *S*, the coefficient of λ^n in $e^{\lambda}A_{\lambda}(t)$ is

$$\frac{1}{n!}M_S(t)$$

• For the statistics we analyze, $A_{\lambda}(t)$ is holomorphic in λ , and so, we can compute M_S using Cauchy's integral formula:

$$M_{\mathcal{S}}(t) = rac{n!}{2\pi i} \oint e^{\lambda} A_{\lambda}(t) rac{d\lambda}{\lambda^{n+1}}$$

48 / 57

Analysis - Chernoff Bound

• Once we have the MGF, Chernoff-type arguments imply

$$\delta_{-} < \inf_{t \ge 0} \frac{M_{\mathcal{S}}(t)}{e^{t\tau}}$$

Analysis - Chernoff Bound

• Once we have the MGF, Chernoff-type arguments imply

$$\delta_{-} < \inf_{t \ge 0} \frac{M_{\mathcal{S}}(t)}{e^{t\tau}}$$

• We have focused on the false negative case in this talk. The false positive case is similar, but makes use of tools from [DGPP18] to restrict the class of alternative distributions

Formal Theorem

Huber Theorem

The Huber statistic for $n/m \ll 1/\varepsilon^2$, $\varepsilon, \delta \ll 1$, and $m \ge C \log n$ for sufficiently large constant *C* achieves sample complexity

$$n = (1 + o(1)) rac{1}{arepsilon^2} \sqrt{m \log rac{1}{\delta}}$$

Best upper bounds

Experimental Results

Figure: The Huber tester performs better than existing testers in practice

• Analyzing constant factors gives better understanding of actual performance

- Analyzing constant factors gives better understanding of actual performance
- Collisions tester has optimal variance of any statistic

- Analyzing constant factors gives better understanding of actual performance
- Collisions tester has optimal variance of any statistic
- Huber tester combines optimal variance with good tails

References I

Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick White.

Testing that distributions are close.

In *Proceedings 41st Annual Symposium on Foundations of Computer Science*, pages 259–269. IEEE, 2000.

Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Sample-optimal identity testing with high probability. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Collision-based testers are optimal for uniformity and closeness. Chicago Journal of Theoretical Computer Science, 2019:1, 2019.

Oded Goldreich and Dana Ron.

On testing expansion in bounded-degree graphs.

In Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages 68–75. Springer, 2011.

Liam Paninski.

A coincidence-based test for uniformity given very sparsely sampled discrete data.

IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.