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Sampling Process of Diffusion Models

Diffusion models learn a distribution q0 by adding noise to

training samples and learning to denoise.

x0 ∼ q0 evolves into xt ∼ e−tx0 + N (0, σ2
t Id) at time t, where

σ2
t = 1 − e−2t. As t grows, distribution converges to N (0, Id).
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Need to learn the score function st := ∇ log qt.

Given accurate enough st’s, diffusion models can provably

sample from q0 with ε TV and γm2 Wasserstein error, where m2
is the second moment of q0.

Question

Howmany training samples are required to learn score functions

to enable accurate diffusion sampling?

Traditionally, this is equivalent to: how many samples are

required to learn each st’s with ε2 error in L2 .

Background: Score Matching

The score matching algorithm learns score function st using

independent samples x1, . . . , xm drawn from q0.

Take Gaussian samples z1, . . . , zm ∼ N (0, σ2
t Id). Then, the

minimizer of the score matching objective is ŝt:

ŝt := arg min
f∈F
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where F is the class of functions represented by the neural

network.

As m → ∞, st is provably the minimizer!

We analyze its concentration: How large do we need m to be

so that no inadequate score function becomes the minimizer?

Sample Complexity of Training

Let the candidate function class F be functions represented by a

P -parameter, D-depth ReLU neural network.

Our Results

To train a diffusion model that achieves ε TV error and γm2
Wasserstein error:

poly(d, 1/ε, log 1
γ, D, P ) training samples suffice, improving

over previous poly(d, 1/ε, 1/γ, exp(D), P ).

This matches the poly(d, 1/ε, log 1
γ) number of iterations in

the sampling process.

It is impossible to get L2 accurate scores using this number

of samples. A new quantile measure is needed.

Work Number of Samples Notes

[OAS23] Õ( 1
εO(d))

Density supported on [−1, 1]d,
belongs to a Besov space

[CHZW23] Õ( 1
(εγ)O(d))

Assuming density supported

on d-dimensional subspace

[BMR20] Õ
(

d5/2R3

γ3ε2m3
2
P D

√
D
)

Assuming NN can represent scores,

distribution is bounded by R

Ours Õ(d2

ε3PD log3 1
γ) Assuming NN can represent scores

Proof Ideas

Exponential Improvement on D

[BMR20] bounds the Rademacher complexity of the function

class, which is exponential in depth.

To circumvent this, we make use of a net argument.

Exponential Improvement on γ (Most Technical Part)

The score function becomes simpler as noise level increases, so

the score is hardest to learn for small t (when σt = γ):
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We utilize the fact that, at time t, the ε accuracy requirement

for st can be relaxed to ε/σt ≈ ε/
√

min(t, 1), canceling out
small t’s hardness.

A (1 − δ)-Quantile Score Error Measure

One key step in the proof is to relax the L2 accuracy

requirement for the scores.

We prove that for score estimate ŝt, we just need the

(1 − δ)-quantile error of each ŝt to be smaller than ε/σt. That is,

Pr
x∼qt

[‖ŝt(x) − st(x)‖ > ε/σt] ≤ δ,

for δ = poly(ε).

For any function f with large (1 − δ)-quantile error:

We guarantee that with m samples, f cannot be the minimizer

of the score matching objective.

The quantile error ensures the samples expose the high-error

regions of f , making its value large in score matching objective.

Hardness of Learning L2-Accurate Scores

There exist distributions needed poly(1/γ) samples to distinguish,

but their scores have large L2 distance.
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True distribution: p1 := (1 − η)N (0, 1) + ηN (−R, 1), or
p2 := (1 − η)N (0, 1) + ηN (R, 1).

The L2 distance between the scores is about ηR2.

Given o(1/η) samples from either p1 or p2 we will only see

samples from the main Gaussian with high probability, and

cannot distinguish them.
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