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= Given n samples from a distribution on R?, want to estimate
mean . Error Notes
Unknown Distribution, d = 1 \/%bgg [Catoni '12; Lee-Valiant '21] Norm Concentration Lemma
Estimator ~ Converges to Notes nown Distribution, d = \/%g% is the smoothed Fisher Information : - -
R . 5 - cnown D! bumf - ——= B cLvea .th ! df nerinformat Let z € R? be subgamma in every projection: for every vector v,
Unknown Distribution Empirical Mean — N (u, =) Central Limit Theorem Unknown Distribution, any d O (\/— 1/ 6) [Hopkins '20; Lee-Valiant '22] 41[6)\@7@] <o AT Sy /2
K Distributi MLE N ,I—_l 7T is the Fisher | a] nown Distribution, an ~ ) E 125 1”1g5 is paper B
nown Listribution (1, 77) s the Fisher Information K Distribution, any d \/ +5\/ This pap forall [\ < CII T Then x has concentrated norm: with probabil-
Table 1. Classical Asymptotic Results Table 2. Finite-Sample Results ity 1 — o,
" In finite-sample setting, when d = 1 and distribution is || < A/Tr(X) + 4\/ |l 1o 2 2
. > | . _ . oty : : : < o + 10 () 10g
unknown, [Catoni "12], [Lee, Valiant '21] show estimator 7i Emp/rlgal mean does.not benefit from “spiky” distributions with || \/ () 124] 5 IC 5
such that with probability 1 — 9, high Fisher information. M ale 1 HCHF 1
S = MLE is asymptotically optimal (Cramer-Rao), but number of + min | 4||C||# og \/T og
-yl < \/20 log 3(1 +o(1)) samples needed depends on distribution. For any fixed number
n of samples, some distribution makes MLE arbitrarily bad! The first term is tight, and the next two are tight up to constants
* Natural Question: What if distribution is known? = Smoothed MLE [GLPV '22] has Fisher information guarantees (from the Gaussian and 1d subgamma case, respectively).
for all distributions + number of samples, but only in one
Location Estimation, Known Distribution, d = 1 dimension and needs o — 0. Experiments
case . . . .
The MLE maximizes the log likelihood, = We perform experiments on a mixture of three Gaussians.
Gaussian Laplace Mixture of Gaussians L((g) L= Z 1ng<xz o 9) Here, d — 20’ €T ~ N(—61’ ]) —|—./\/"(€17 9]> —|— 10_4_/\[(104627 10_6])
/\ SO it is a zero of the average score > Vlogp(x; — 6).
N 10t 102 100 10t 100 100
/\ /\ Contributions Empirical Mean 10.15 11.18 18.76 51.09 34.58 51.82
Ay VI Newton w/out smoothing 9.45 10.34 1/7.00 45.94 0.66 0.63
L_ g 1o L & o Main Result Newtonw/ R = 0.01] 621 609 595 587 587 5.70
2 After smoothing, one step of Newton's method to approximate |
* Finite-Sample Setting: Might expect | — p| < 2555. the MLE gives fast, accurate results for any distribution in 1 or Table 3. Median Error
. s . .
Unfor.tunately, mposable. | | more dimensions. = We observe better finite-sample performance by smoothing: it
= Solution: Smoothing [Gupta, Lee, Price, Valiant; NeurlPS 2022] « In one dimension matches [GLPV '22] but without requiring makes the problem better conditioned, so easier to find a good
w  an 5 — 0. solution (until enough samples that the initial estimate is
| cale ITor | | ) .
”‘ﬁ g = |n high dimensions, fast algorithm thatis 1 + o(1) of smoothed sufficiently precise).
g I y optimal for n, des(Z5") > log 5
: Summar
| A Main Theorem: high dimensions y
'/, \I.IlOO e . . . .
B n Corn > O (@)2 (10 2 4 doe(T1) 4 deﬁ(Z)Q) and B = 2] 1. Gaussian Smoothing + MLE — Finite sample bound for mean
- ~ 1/8 ~ - A S0 T O SR )T aW@) ) 8 estimation with known density in one dimension
Smooth with radius r ~ o/n"/° Gaussian, then run MLE. With th probability 1 — § | | , ,
WL ROl oiiiey L — @ 2. Gaussian Smoothing + single step of Newton's method on

1 — i LS
prob 0 TH(T) 17! Tog & oradient of log-likelihood
210g2 | — pl| < (14n) LA i 55 = Faster and more accurate
S . < 5 1 1 H M — 77 l . . . ° ° °
‘,U /i‘ > T ( + 0( )) n n = Finite sample bound in high dimensions

where Z. is the Fisher information of the smoothed distribution.
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