High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors

Asymptotic Mean Estimation

• Given n samples from a distribution on \mathbb{R}^d , want to estimate mean μ .

	Estimator	Converges to	1
Unknown Distribution	Empirical Mean	$\mathcal{N}(\mu, rac{\Sigma}{n})$	Central L
Known Distribution	MLE	$\mathcal{N}(\mu, rac{\mathcal{I}^{-1}}{n})$	${\cal I}$ is the Fis

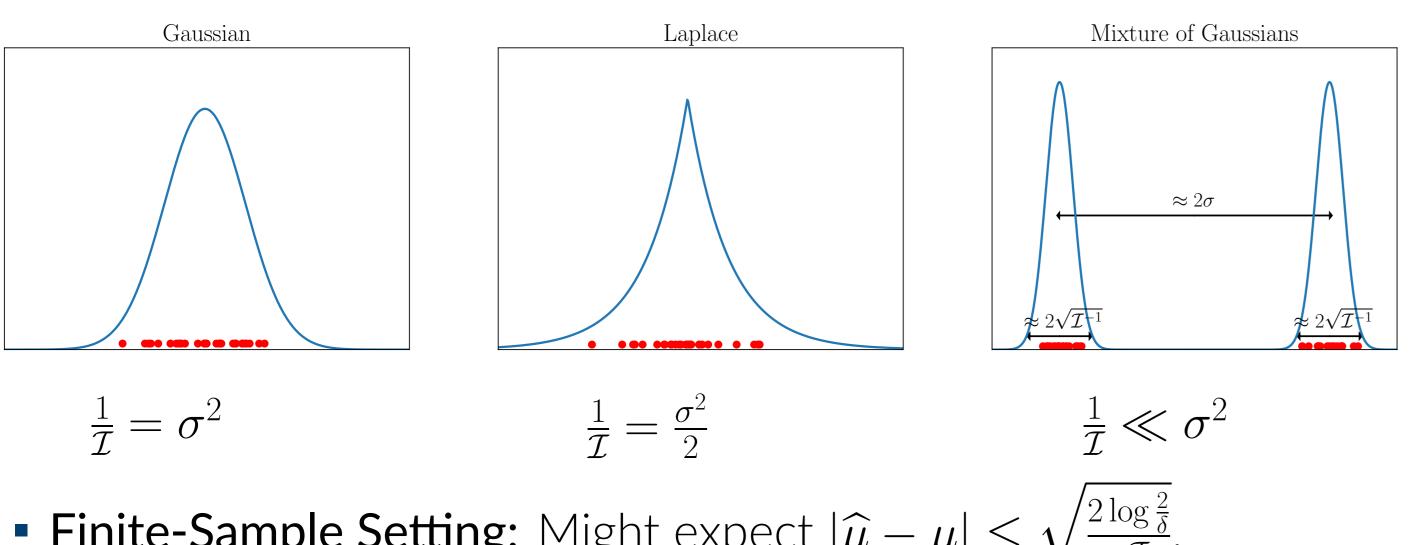
 Table 1. Classical Asymptotic Results

• In *finite-sample* setting, when d = 1 and distribution is **unknown**, [Catoni '12], [Lee, Valiant '21] show estimator $\hat{\mu}$ such that with probability $1 - \delta$,

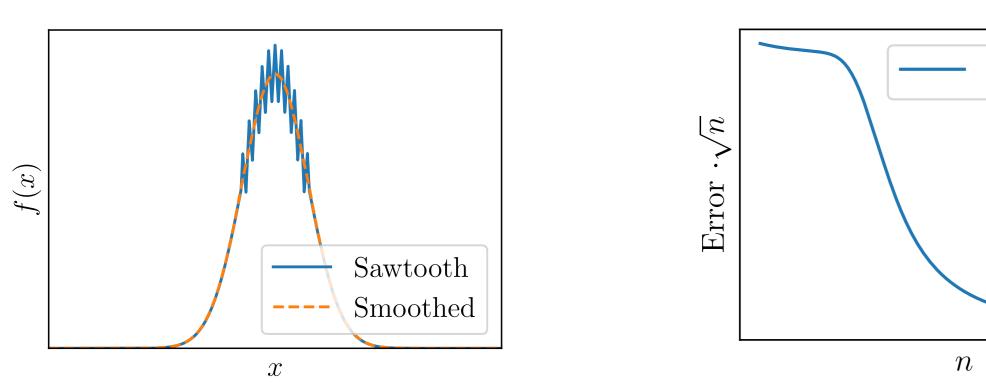
$$|\widehat{\mu} - \mu| \le \sqrt{\frac{2\sigma^2 \log \frac{2}{\delta}}{n}} (1 + o(1))$$

• Natural Question: What if distribution is known?

Location Estimation, Known Distribution, d = 1case



- Finite-Sample Setting: Might expect $|\widehat{\mu} \mu| \leq \sqrt{\frac{2\log \frac{2}{\delta}}{n\mathcal{I}}}$. Unfortunately, impossible!
- Solution: Smoothing [Gupta, Lee, Price, Valiant; NeurIPS 2022]



Smooth with radius $r \approx \sigma/n^{1/8}$ Gaussian, then run MLE. With prob. $1-\delta$,

$$|\widehat{\mu} - \mu| \le \sqrt{\frac{2\log \frac{2}{\delta}}{n\mathcal{I}_r}}(1 + o(1))$$

where \mathcal{I}_r is the Fisher information of the smoothed distribution.

Shivam Gupta¹

¹The University of Texas at Austin

²University of Wisconsin–Madison

Finite-Sample Mean Estimation

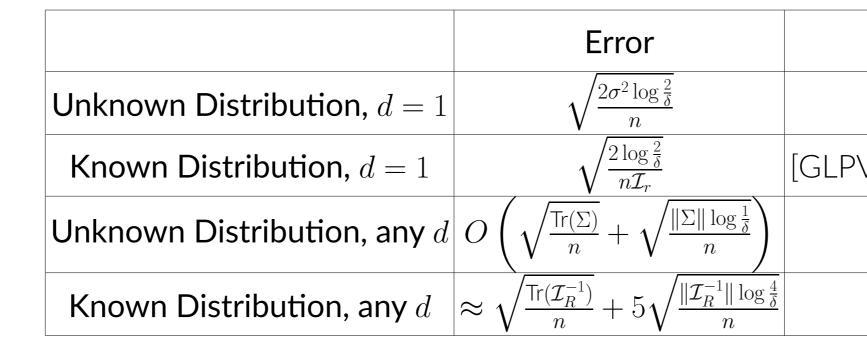


 Table 2. Finite-Sample Results

- Empirical mean does not benefit from "spiky" distributions with high Fisher information.
- MLE is asymptotically optimal (Cramer-Rao), but number of samples needed *depends* on *distribution*. For any fixed number of samples, some distribution makes MLE arbitrarily bad!
- Smoothed MLE [GLPV '22] has Fisher information guarantees for all distributions + number of samples, but only in one dimension and needs $\delta \rightarrow 0$.

The MLE maximizes the log likelihood,

 $L(\theta) := \sum \log p(x_i)$

so it is a zero of the average score $\sum
abla$

Contributions

Main Result

After smoothing, one step of Newton's method to approximate the MLE gives fast, accurate results for any distribution in 1 or more dimensions.

- In one dimension matches [GLPV '22] but without requiring $\delta \to 0.$
- In high dimensions, fast algorithm that is 1 + o(1) of smoothed optimal for $n, d_{\text{eff}}(\mathcal{I}_R^{-1}) \gg \log \frac{1}{\delta}$

Main Theo

For n > Owith proba

orem: high dimensions

$$D_{\eta} \left(\left(\frac{\|\Sigma\|}{r^2} \right)^2 \left(\log \frac{2}{\delta} + d_{\text{eff}}(\mathcal{I}_R^{-1}) + \frac{d_{\text{eff}}(\Sigma)^2}{d_{\text{eff}}(\mathcal{I}_R^{-1})} \right) \right), \text{ and } R = r^2 I_d,$$
ability $1 - \delta,$

$$\|\widehat{\mu} - \mu\| \le (1 + \eta) \sqrt{\frac{\text{Tr}(\mathcal{I}_R^{-1})}{n}} + 5\sqrt{\frac{\|\mathcal{I}_R^{-1}\|\log \frac{4}{\delta}}{n}}$$

Notes

Limit Theorem Fisher Information

- Scaled Error

ICML 2023

Jasper C.H. Lee² Eric Price¹

Notes

[Catoni '12; Lee-Valiant '21]

[GLPV22], \mathcal{I}_r is the smoothed Fisher Information [Hopkins '20; Lee-Valiant '22]

This paper

$$(x_i - \theta)$$

 $7 \log p(x_i - \theta).$

Norm Concentration from Subgamma Projections

Norm Concentration Lemma

ity $1-\delta$,

$$\begin{aligned} \|x\| &\leq \sqrt{\operatorname{Tr}(\Sigma)} + 4\sqrt{\|\Sigma\| \log\frac{2}{\delta}} + 16\|C\| \log\frac{2}{\delta} \\ &+ \min\left(4\|C\|_F \sqrt{\log\frac{2}{\delta}}, 8\frac{\|C\|_F^2}{\sqrt{\operatorname{Tr}(\Sigma)}} \log\frac{1}{\delta}\right) \end{aligned}$$

• We perform experiments on a mixture of three Gaussians. Here, $d = 20, x \sim \mathcal{N}(-e_1, I) + \mathcal{N}(e_1, 9I) + 10^{-4} \mathcal{N}(10^4 e_2, 10^{-6}I).$

Empirical Mean

Newton w/out smoothir

Newton w/ R = 0.01I

- We observe better finite-sample performance by smoothing: it makes the problem better conditioned, so easier to find a good solution (until enough samples that the initial estimate is sufficiently precise).
- 1. Gaussian Smoothing + MLE \rightarrow Finite sample bound for mean estimation with **known** density in **one dimension** 2. Gaussian Smoothing + single step of Newton's method on gradient of log-likelihood
- Faster and more accurate
 - Finite sample bound in high dimensions

- Let $x \in \mathbb{R}^d$ be subgamma in every projection: for every vector v, $\mathbb{E}[e^{\lambda \langle x, v \rangle}] \le e^{\lambda^2 v^T \Sigma v/2}$
- for all $|\lambda| \leq \frac{1}{C\|v\|}$. Then x has concentrated norm: with probabil-

The first term is tight, and the next two are tight up to constants (from the Gaussian and 1d subgamma case, respectively).

Experiments

	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
	10.15	11.18	18.76	51.09	34.58	51.82
ng	9.45	10.34	17.00	45.94	0.66	0.63
r	6.21	6.09	5.95	5.87	5.87	5.70

 Table 3. Median Error

Summary