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Asymptotic Mean Estimation

Given n samples from a distribution on Rd, want to estimate

mean µ.

Estimator Converges to Notes

Unknown Distribution Empirical Mean N (µ, Σ
n) Central Limit Theorem

Known Distribution MLE N (µ, I−1

n ) I is the Fisher Information

Table 1. Classical Asymptotic Results

In finite-sample setting, when d = 1 and distribution is

unknown, [Catoni ’12], [Lee, Valiant ’21] show estimator µ̂
such that with probability 1 − δ,

|µ̂ − µ| ≤

√
2σ2 log 2

δ

n
(1 + o(1))

Natural Question: What if distribution is known?

Location Estimation, Known Distribution, d = 1
case
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Mixture of Gaussians
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Finite-Sample Setting: Might expect |µ̂ − µ| ≤
√

2 log 2
δ

nI .

Unfortunately, impossible!

Solution: Smoothing [Gupta, Lee, Price, Valiant; NeurIPS 2022]
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Smooth with radius r ≈ σ/n1/8 Gaussian, then run MLE. With

prob. 1 − δ,

|µ̂ − µ| ≤

√
2 log 2

δ

nIr
(1 + o(1))

where Ir is the Fisher information of the smoothed distribution.

Finite-Sample Mean Estimation

Error Notes

Unknown Distribution, d = 1
√

2σ2 log 2
δ

n [Catoni ’12; Lee-Valiant ’21]

Known Distribution, d = 1
√

2 log 2
δ

nIr
[GLPV22], Ir is the smoothed Fisher Information

Unknown Distribution, any d O

(√
Tr(Σ)

n +
√

‖Σ‖ log 1
δ

n

)
[Hopkins ’20; Lee-Valiant ’22]

Known Distribution, any d ≈
√

Tr(I−1
R )

n + 5
√

‖I−1
R ‖ log 4

δ

n This paper

Table 2. Finite-Sample Results

Empirical mean does not benefit from “spiky” distributions with

high Fisher information.

MLE is asymptotically optimal (Cramer-Rao), but number of

samples needed depends on distribution. For any fixed number

of samples, some distribution makes MLE arbitrarily bad!

Smoothed MLE [GLPV ’22] has Fisher information guarantees

for all distributions + number of samples, but only in one

dimension and needs δ → 0.

The MLE maximizes the log likelihood,

L(θ) :=
∑

log p(xi − θ)
so it is a zero of the average score

∑
∇ log p(xi − θ).

Contributions

Main Result

After smoothing, one step of Newton’s method to approximate

the MLE gives fast, accurate results for any distribution in 1 or

more dimensions.

In one dimension matches [GLPV ’22] but without requiring

δ → 0.
In high dimensions, fast algorithm that is 1 + o(1) of smoothed

optimal for n, deff(I−1
R ) � log 1

δ

Main Theorem: high dimensions

For n > Oη

((
‖Σ‖
r2

)2 (
log 2

δ + deff(I−1
R ) + deff(Σ)2

deff(I−1
R )

))
, and R = r2Id,

with probability 1 − δ,

‖µ̂ − µ‖ ≤ (1 + η)

√
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n

Norm Concentration from Subgamma
Projections

Norm Concentration Lemma

Let x ∈ Rd be subgamma in every projection: for every vector v,

E[eλ〈x,v〉] ≤ eλ2vTΣv/2

for all |λ| ≤ 1
C‖v‖. Then x has concentrated norm: with probabil-

ity 1 − δ,

‖x‖ ≤
√
Tr(Σ) + 4

√
‖Σ‖ log 2

δ
+ 16‖C‖ log 2

δ

+ min

(
4‖C‖F

√
log 2

δ
, 8 ‖C‖2

F√
Tr(Σ)

log 1
δ

)

The first term is tight, and the next two are tight up to constants

(from the Gaussian and 1d subgamma case, respectively).

Experiments

We perform experiments on a mixture of three Gaussians.

Here, d = 20, x ∼ N (−e1, I) + N (e1, 9I) + 10−4N (104e2, 10−6I).

N 101 102 103 104 105 106

Empirical Mean 10.15 11.18 18.76 51.09 34.58 51.82

Newton w/out smoothing 9.45 10.34 17.00 45.94 0.66 0.63

Newton w/ R = 0.01I 6.21 6.09 5.95 5.87 5.87 5.70

Table 3. Median Error

We observe better finite-sample performance by smoothing: it

makes the problem better conditioned, so easier to find a good

solution (until enough samples that the initial estimate is

sufficiently precise).

Summary

1. Gaussian Smoothing + MLE → Finite sample bound for mean

estimation with known density in one dimension

2. Gaussian Smoothing + single step of Newton’s method on
gradient of log-likelihood

Faster and more accurate

Finite sample bound in high dimensions
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