Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel
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Sampling Process of Diffusion Models

Iteration Complexity of Diffusion Sampling

= Diffusion models learn a distribution gy by adding noise to
training samples and learning to denoise.

= Formally, the image distribution gy Is converted to the standard
Gaussian via the forward SDE:

do,” = —z;" dt +vV2dB;,  xp" ~ qq

= 1y ~ gy evolves into z; ~ e txg + N (0, 071,) at time ¢, where
07 =1—e " Ast grows, distribution converges to N (0, I,).

t=0 t=0.5 t=1

= There Is a corresponding probability flow ODE, that can be used
to sample from ¢q given a sample xy ~ qr ~ N (0, 1):
doy = (x¢ + VIngp_¢(ay)) dt.
= Need to learn the score function V log ¢;.
= Given score approximations s;'s, diffusion models can provably

sample from ¢, provided enough discretization steps are used.
Question
How many steps are necessary for accurate diffusion sampling?

= [CCL723a] showed that a standard discretization of the ODE
interleaved with “corrector” steps can sample in O(v/d) steps
with small Total Variation (TV) error.

= For log-concave sampling with small 2-Wasserstein error,
SL19] showed that a randomized midpoint discretization can
sample in O(d"/?) steps.

Our Assumptions

Our Results

= \We show that a randomized midpoint discretization of the
ODE interleaved with corrector steps can sample from
diffusion models in O(d”/?) steps with small TV error.

= Our algorithm can be parallelized to sample in only 5(log2 d)
parallel rounds - first provable guarantees for parallel
diffusion sampling

" We also obtain an improvement for log-concave sampling in
Total Variation - show that O(d”/"?) steps suffice compared

to previous O(v/d)

Work  Number of Iterations Notes
CCLT™23b) O(d) Standard SDE Discretization
CCL*23a. O(V/d) Discretized ODE + Corrector steps
Ours O(d"/12) Randomized Midpoint Discretization of ODE
Sequential Sampling

= Have access to score approximations s;'s with
L [[[se(ze) — V(o) |]?] < e

Lt
= True scores Vq,(-) and score approximations s;(-) are
L-Lipschitz

= The standard discretization of the ODE is given by:
dr; = (ZI’J() + ST—|t/h) (Qth/th)) dt for o ~~ N(O, [d)

ST(CUO) ST—h(ﬂi‘h) ST—zh(CEzh)

= |dea: Use the score at some point in the middle of the interval
instead

ST—a1h (quh) ST—azh (xh(H‘O‘?)) ST—h(2+as) (xh(2+a3))

= The integral formulation of the reverse ODE is given by

to+h
h to+h—t
Lt+h — € Ty, + / e’ ST_t(ZEt)dt
to

= The standard discretization (DDIM) gives the approximation

Lty+h ~ 6hx?fo T (eh _ 1)ST—to(ajto)

Issue: Inherently biased
= |nstead, use an unbiased estimate:

to+h
tot+h—t - l—a)h
/ gy ()t A~ B Msp_ o (T van)
to

where a ~ [0, 1]. How to obtain xs can?

= First approximate s, qh:
 _ah h
Ttoran & € wy, + (€Y — 1)sp_yg (24,
= Then use the above to approximate xy,

h (1—a)h

ajt(ﬂ‘h ~ € :Et() + h@ ST—(to—l—O&h) (xt(ﬁ—&h)

Parallel Sampling

= |[nstead of choosing a single randomized midpoint «, we break
up our window [ty, tg + h| into R sub-windows and select
randomized midpoints «gq, ..., ag for these sub-windows.

= For § = h/R we note that:

[/

~ Ozz‘h Cvih— —1)0 Cvih— 0
Ttyrah R €7 Tty + E :(6 SR max(e g 71)) ' ST—(to+@jh)(xto+Oéjh)'

j=1
‘ends to equality as R — oo.

" [o approximate x; ,,,, We maintain a sequence of estimates:

(k) a;h~(k—1)
xtoJrOéqzh € Lt
i
o;h—(7—1)0 a;h—j0 k=)
4 E (@ U=1o _ max(e®" ™/ ,1)) °3T—(to+ajh)(xto+ajh)>
j=1

for k = 1 to some large enough K (O(log? d) in our case).
-stimates can be computed in parallel.

= Finally we approximate .

R
ajto—l—h ~ € tho T 5 E ,6( ) ST—(tQ—I—CYZ'h) (xt0+aih) )
1=1
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