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Sampling Process of Diffusion Models

Diffusion models learn a distribution q0 by adding noise to

training samples and learning to denoise.

Formally, the image distribution q0 is converted to the standard

Gaussian via the forward SDE:

dx→t = −x→t dt +
√

2 dBt x→0 ∼ q0

x0 ∼ q0 evolves into xt ∼ e−tx0 +N (0, σ2
t Id) at time t, where

σ2
t = 1− e−2t. As t grows, distribution converges to N (0, Id).
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There is a corresponding probability flow ODE, that can be used

to sample from q0 given a sample x0 ∼ qT ≈ N (0, Id):
dxt = (xt +∇ ln qT−t(xt)) dt .

Need to learn the score function ∇ log qt.

Given score approximations st’s, diffusion models can provably

sample from q0, provided enough discretization steps are used.

Question

How many steps are necessary for accurate diffusion sampling?

[CCL+23a] showed that a standard discretization of the ODE

interleaved with “corrector” steps can sample in Õ(
√

d) steps
with small Total Variation (TV) error.

For log-concave sampling with small 2-Wasserstein error,

[SL19] showed that a randomized midpoint discretization can

sample in Õ(d1/3) steps.

Our Assumptions

Have access to score approximations st’s with

E
x∼qt

[
‖st(xt)−∇qt(xt)‖2] < ε2

sc

True scores ∇qt(·) and score approximations st(·) are
L-Lipschitz

Iteration Complexity of Diffusion Sampling

Our Results

We show that a randomized midpoint discretization of the

ODE interleaved with corrector steps can sample from

diffusion models in Õ(d5/12) steps with small TV error.

Our algorithm can be parallelized to sample in only Õ(log2 d)
parallel rounds – first provable guarantees for parallel

diffusion sampling

We also obtain an improvement for log-concave sampling in

Total Variation – show that Õ(d5/12) steps suffice compared

to previous Õ(
√

d)

Work Number of Iterations Notes

[CCL+23b] Õ(d) Standard SDE Discretization

[CCL+23a] Õ(
√

d) Discretized ODE + Corrector steps

Ours Õ(d5/12) Randomized Midpoint Discretization of ODE

Sequential Sampling

The standard discretization of the ODE is given by:

dxt =
(
x0 + sT−bt/hc(xbt/hch)

)
dt for x0 ∼ N (0, Id)

sT (x0) sT−h(xh) sT−2h(x2h)

Idea: Use the score at some point in the middle of the interval

instead

sT−α1h(xα1h) sT−α2h(xh(1+α2)) sT−h(2+α3)(xh(2+α3))

The integral formulation of the reverse ODE is given by

xt0+h = ehxt0 +
∫ t0+h

t0

et0+h−tsT−t(xt)dt

The standard discretization (DDIM) gives the approximation

xt0+h ≈ ehxt0 + (eh − 1)sT−t0(xt0)
Issue: Inherently biased

Instead, use an unbiased estimate:∫ t0+h

t0

et0+h−tsT−t(xt)dt ≈ he(1−α)hsT−(t0+αh)(xt0+αh)

where α ∼ [0, 1]. How to obtain xt0+αh?

First approximate xt0+αh:

xt0+αh ≈ eαhxt0 + (eαh − 1)sT−t0(xt0)
Then use the above to approximate xt0+h:

xt0+h ≈ ehxt0 + he(1−α)hsT−(t0+αh)(xt0+αh)

Parallel Sampling

Instead of choosing a single randomized midpoint α, we break

up our window [t0, t0 + h] into R sub-windows and select

randomized midpoints α1, . . . , αR for these sub-windows.

For δ = h/R we note that:

xt0+αih ≈ eαihxt0 +
i∑

j=1

(
eαih−(j−1)δ −max(eαih−jδ, 1)

)
· sT−(t0+αjh)(xt0+αjh) .

Tends to equality as R→∞.

To approximate xt0+αjh we maintain a sequence of estimates:

x̂
(k)
t0+αih

← eαihx̂
(k−1)
t0

+
i∑

j=1

(
eαih−(j−1)δ −max(eαih−jδ, 1)

)
· sT−(t0+αjh)(x̂

(k−1)
t0+αjh

) ,

for k = 1 to some large enough K (Õ(log2 d) in our case).

Estimates can be computed in parallel.

Finally we approximate xt0+h:

xt0+h ≈ ehx̂
(K)
t0

+ δ

R∑
i=1

e(1−αi)hsT−(t0+αih)(x̂
(K)
t0+αih

) .

Experiments
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