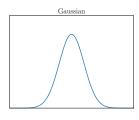
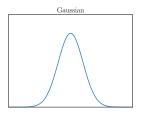
High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors

Shivam Gupta (UT Austin), Jasper C.H. Lee (UW Madison), Eric Price (UT Austin)

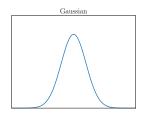
August 1, 2024

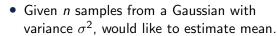


• Given *n* samples from a Gaussian with variance σ^2 , would like to estimate mean.

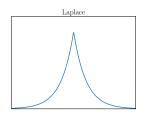


- Given *n* samples from a Gaussian with variance σ^2 , would like to estimate mean.
- The optimal estimator is the empirical mean, which has $1-\delta$ confidence radius $\sigma\sqrt{\frac{2\log\frac{1}{\delta}}{n}}$

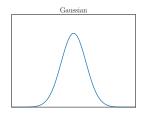




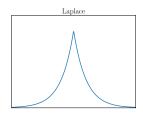
• The optimal estimator is the empirical mean, which has $1-\delta$ confidence radius $\sigma\sqrt{\frac{2\log\frac{1}{\delta}}{n}}$



• For the Laplace distribution, the median achieves error $\sigma\sqrt{\frac{\log\frac{1}{\delta}}{n}}$, a factor $\sqrt{2}$ savings over the above

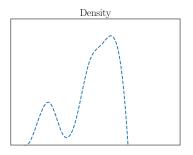


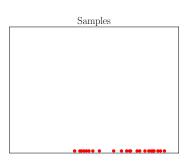
- Given n samples from a Gaussian with variance σ^2 , would like to estimate mean.
- The optimal estimator is the empirical mean, which has $1-\delta$ confidence radius $\sigma\sqrt{\frac{2\log\frac{1}{\delta}}{n}}$

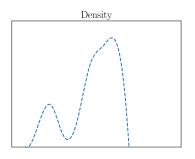


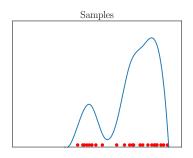
• For the Laplace distribution, the median achieves error $\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}$, a factor $\sqrt{2}$ savings over the above

Given a density f (up to shift) on \mathbb{R}^d , and n samples X_1, \ldots, X_n , what is the best estimator of the mean? **Mean Estimation with known density**.

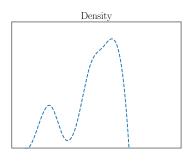


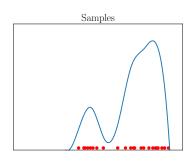






 Fit samples to density: find mean that is most likely to have generated samples – aka Maximum Likelihood Estimation (MLE)





- Fit samples to density: find mean that is most likely to have generated samples – aka Maximum Likelihood Estimation (MLE)
- Enjoys great properties asymptotically converges to $\mathcal{N}(\mu, \mathcal{I}^{-1}/n)$, where \mathcal{I} is the *Fisher Information*

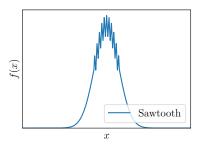




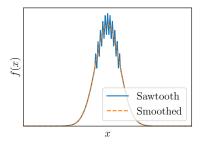
- Fit samples to density: find mean that is most likely to have generated samples – aka Maximum Likelihood Estimation (MLE)
- Enjoys great properties asymptotically converges to $\mathcal{N}(\mu, \mathcal{I}^{-1}/n)$, where \mathcal{I} is the *Fisher Information*
- Basically tight: Cramér-Rao bound says any unbiased estimator must have variance at least \mathcal{I}^{-1}/n

• In 1-d, when density known, might expect $|\hat{\mu} - \mu| \leq \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$

- ullet In 1-d, when density known, might expect $|\hat{\mu}-\mu| \leq \sqrt{rac{2\lograc{2}{\delta}}{n\mathcal{I}}}$
- Unfortunately, impossible!



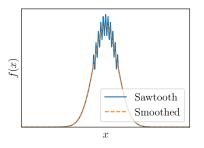
- In 1-d, when density known, might expect $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$
- Unfortunately, impossible!

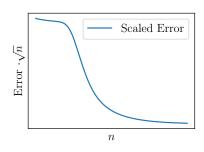


• **Solution:** smoothing [Gupta, Lee, Price, Valiant, NeurIPS 2022] Smooth with a radius $r = \sigma/n^{1/6}$ Gaussian, then run MLE. With probability $1 - \delta$,

$$|\hat{\mu} - \mu| \leq \sqrt{rac{2\lograc{2}{\delta}}{n\mathcal{I}_r}}(1 + o(1))$$

- In 1-d, when density known, might expect $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$
- Unfortunately, impossible!





• **Solution:** smoothing [Gupta, Lee, Price, Valiant, NeurIPS 2022] Smooth with a radius $r=\sigma/n^{1/6}$ Gaussian, then run MLE. With probability $1-\delta$,

$$|\hat{\mu} - \mu| \leq \sqrt{rac{2\lograc{2}{\delta}}{n\mathcal{I}_r}}(1 + o(1))$$

This paper

- 1. A **new algorithm** for 1d location estimation.
 - Faster: one step of Newton's method rather than full MLE
 - More accurate: Smaller o(1) term, particularly for constant δ .

This paper

- 1. A **new algorithm** for 1d location estimation.
 - Faster: one step of Newton's method rather than full MLE
 - More accurate: Smaller o(1) term, particularly for constant δ .
- 2. An extension to high dimensions.
 - Possible because of simplified algorithm
 - Bound matches Gaussian tail bound for large effective dimension

Our results

Theorem (Informal)

Let $R=r^2I_d$ and let \mathcal{I}_R be the R-smoothed Fisher information. For large enough r decaying polynomially in n, and any constant $0<\eta<1$

$$\|\hat{\mu} - \mu\| \leq (1+\eta)\sqrt{rac{\mathsf{Tr}(\mathcal{I}_R^{-1})}{n}} + 5\sqrt{rac{\|\mathcal{I}_R^{-1}\|\lograc{4}{\delta}}{n}}$$

Our results

Theorem (Informal)

Let $R=r^2I_d$ and let \mathcal{I}_R be the R-smoothed Fisher information. For large enough r decaying polynomially in n, and any constant $0<\eta<1$

$$\|\hat{\mu} - \mu\| \leq (1+\eta)\sqrt{\frac{\mathsf{Tr}(\mathcal{I}_R^{-1})}{n}} + 5\sqrt{\frac{\|\mathcal{I}_R^{-1}\|\log\frac{4}{\delta}}{n}}$$

 Based on new theorem for concentration of norm of vectors with subgamma projections

Summary

- 1. Gaussian Smoothing + MLE \rightarrow Finite sample bound for mean estimation with **known** density in **one dimension**
- 2. Gaussian Smoothing + single step of Newton's method on gradient of log-likelihood
 - Faster and more accurate
 - Finite sample bound in high dimensions

Contact: shivamgupta@utexas.edu