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Motivating Examples
Gaussian

• Given n samples from a Gaussian with
variance σ2, would like to estimate mean.

• The optimal estimator is the empirical mean,

which has 1− δ confidence radius σ

√
2 log 1

δ
n

Laplace

• For the Laplace distribution, the median

achieves error σ

√
log 1

δ
n , a factor

√
2 savings

over the above

Given a density f (up to shift) on Rd , and n samples X1, . . . ,Xn, what is
the best estimator of the mean? Mean Estimation with known density.
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First attempt

Density Samples

• Fit samples to density: find mean that is most likely to have
generated samples – aka Maximum Likelihood Estimation (MLE)

• Enjoys great properties asymptotically – converges to N (µ, I−1/n),
where I is the Fisher Information

• Basically tight: Cramér-Rao bound says any unbiased estimator must
have variance at least I−1/n
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Finite-Sample Setting

• In 1-d, when density known, might expect |µ̂− µ| ≤
√

2 log 2
δ

nI

• Unfortunately, impossible!

n

E
rr

or
·√
n

Scaled Error

• Solution: smoothing [Gupta, Lee, Price, Valiant, NeurIPS 2022]
Smooth with a radius r = σ/n1/6 Gaussian, then run MLE. With
probability 1− δ,

|µ̂− µ| ≤

√
2 log 2

δ

nIr
(1 + o(1))
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This paper

1. A new algorithm for 1d location estimation.
• Faster: one step of Newton’s method rather than full MLE
• More accurate: Smaller o(1) term, particularly for constant δ.

2. An extension to high dimensions.
• Possible because of simplified algorithm
• Bound matches Gaussian tail bound for large effective dimension
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Our results

Theorem (Informal)

Let R = r2Id and let IR be the R-smoothed Fisher information. For large
enough r decaying polynomially in n, and any constant 0 < η < 1

∥µ̂− µ∥ ≤ (1 + η)

√
Tr(I−1

R )

n
+ 5

√
∥I−1

R ∥ log 4
δ

n

• Based on new theorem for concentration of norm of vectors with
subgamma projections
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Summary

1. Gaussian Smoothing + MLE → Finite sample bound for mean
estimation with known density in one dimension

2. Gaussian Smoothing + single step of Newton’s method on gradient of
log-likelihood

• Faster and more accurate
• Finite sample bound in high dimensions

Contact: shivamgupta@utexas.edu
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