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Motivating Examples

Gaussian

® Given n samples from a Gaussian with
variance o2, would like to estimate mean.
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Motivating Examples

Gaussian

® Given n samples from a Gaussian with
variance o2, would like to estimate mean.

® The optimal estimator is the empirical mean,

1
which has 1 — § confidence radius a\/@

Laplace

® For the Laplace distribution, the median

. log L .
achieves error o\/ i“ , a factor v/2 savings

over the above

Given a density f (up to shift) on RY, and n samples Xi,. .., X,, what is
the best estimator of the mean? Mean Estimation with known density.
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First attempt

Density

Samples

® Fit samples to density: find mean that is most likely to have
generated samples — aka Maximum Likelihood Estimation (MLE)
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First attempt

Density

Samples

® Fit samples to density: find mean that is most likely to have
generated samples — aka Maximum Likelihood Estimation (MLE)

® Enjoys great properties asymptotically — converges to N(,Z71/n),
where Z is the Fisher Information

® Basically tight: Cramér-Rao bound says any unbiased estimator must
have variance at least Z71/n
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Finite-Sample Setting

2log 2
nZ

® In 1-d, when density known, might expect | — p| <
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Finite-Sample Setting
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® In 1-d, when density known, might expect | — p| < 2'255
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¢ Solution: smoothing [Gupta, Lee, Price, Valiant, NeurlPS 2022]
Smooth with a radius r = 0/n'/® Gaussian, then run MLE. With

probability 1 — ¢,
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Finite-Sample Setting

2
® In 1-d, when density known, might expect | — p| < 2'255

® Unfortunately, impossible!
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¢ Solution: smoothing [Gupta, Lee, Price, Valiant, NeurlPS 2022]
Smooth with a radius r = 0/n%/® Gaussian, then run MLE. With

probability 1 — ¢,
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This paper

1. A new algorithm for 1d location estimation.

® Faster: one step of Newton's method rather than full MLE
® More accurate: Smaller o(1) term, particularly for constant ¢.
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This paper

1. A new algorithm for 1d location estimation.

® Faster: one step of Newton's method rather than full MLE
® More accurate: Smaller o(1) term, particularly for constant ¢.

2. An extension to high dimensions.

® Possible because of simplified algorithm
® Bound matches Gaussian tail bound for large effective dimension
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Our results

Theorem (Informal)

Let R = r?l; and let Zg be the R-smoothed Fisher information. For large
enough r decaying polynomially in n, and any constant 0 <7 < 1

X Tr(Zz") IZ5" || log 4
||u—u||§(1+n)\/ = +5\/ Rn 0




Our results

Theorem (Informal)

Let R = r?l; and let Zg be the R-smoothed Fisher information. For large
enough r decaying polynomially in n, and any constant 0 < 7 < 1

X Tr(Zz") IZ5" || log 4
||uu||§(1+n)\/ nR +5\/ Rn 0

® Based on new theorem for concentration of norm of vectors with
subgamma projections




1. Gaussian Smoothing + MLE — Finite sample bound for mean
estimation with known density in one dimension

2. Gaussian Smoothing + single step of Newton's method on gradient of
log-likelihood

® Faster and more accurate
® Finite sample bound in high dimensions

Contact: shivamgupta@utexas.edu
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