Diffusion

• Diffusion has become the most successful method for image generation, serving as backbone for DALL-E, Midjourney, Stable Diffusion

Diffusion

• Diffusion has become the most successful method for image generation, serving as backbone for DALL-E, Midjourney, Stable Diffusion

• Have a complicated distribution (say over images) q₀, would like to *learn* the distribution and then *sample* from it

• Idea: Add noise to training images, learn how to denoise

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0$$

where B_t is Brownian motion.

• There is an associated reverse SDE – depends on score function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.

- There is an associated reverse SDE depends on score function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.
- Strategy:
 - 1. Train score model. Done via ERM on the score-matching objective, which minimizes L^2 error with infinite samples.
 - 2. Sample using score estimates. Requires discretizing the reverse SDE.

- There is an associated reverse SDE depends on score function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.
- Strategy:
 - 1. Train score model. Done via ERM on the score-matching objective, which minimizes L^2 error with infinite samples.
 - 2. Sample using score estimates. Requires discretizing the reverse SDE.
- Natural questions: How many samples to train? How many discretization steps?

- There is an associated reverse SDE depends on score function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.
- Strategy:
 - 1. Train score model. Done via ERM on the score-matching objective, which minimizes L^2 error with infinite samples.
 - 2. Sample using score estimates. Requires discretizing the reverse SDE.
- Natural questions: How many samples to train? How many discretization steps?
- Remarkably, both these quantities have good theoretical bounds

Prior Work

• For γ -Wasserstein error, ε -TV error, and hypothesis class \mathcal{H} ,

Samples to Train		Steps to Sample		
$\left poly\left(d, rac{1}{arepsilon}, rac{1}{\gamma}, log\left \mathcal{H} ight ight) ight $) [BMR20] ¹	poly ($\left(d, \frac{1}{\gamma}, \frac{1}{\varepsilon}\right)$	$) [CCL+22]^2$
· · ·				

¹Adam Block, Youssef Mroueh, Alexander Rakhlin (2020)

²Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, Anru R. Zhang (2022)

³Joe Benton, Valentin De Bortoli, Arnaud Doucet, George Deligiannidis (2023)

Prior Work

• For γ -Wasserstein error, ε -TV error, and hypothesis class \mathcal{H} ,

Samples to Train	Steps to Sample	
$\left(poly\left(d, rac{1}{arepsilon}, rac{1}{\gamma}, log\left \mathcal{H} ight ight) \left[BMR20 ight]^{1} ight)$	$\left(poly\left(d, rac{1}{\gamma}, rac{1}{arepsilon} ight) \left[CCL + 22 ight]^2 ight)$	
???	$\widetilde{O}\left(rac{d\log^2 rac{1}{\gamma}}{arepsilon^2} ight)$ [BBDD23] ³	

¹Adam Block, Youssef Mroueh, Alexander Rakhlin (2020)

²Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, Anru R. Zhang (2022)

³ Joe Benton, Valentin De Bortoli, Arnaud Doucet, George Deligiannidis (2023)

• For γ -Wasserstein error, ε -TV error, and hypothesis class \mathcal{H} ,

Samples to Train		Steps to Sample	
$poly\left(d,rac{1}{arepsilon},rac{1}{arphi},log\left \mathcal{H} ight ight)$) [BMR20] ¹	poly $\left(d, \frac{1}{\gamma}, \frac{1}{\varepsilon}\right)$ [CCL+22] ²	
???		$\widetilde{O}\left(rac{d\log^2 rac{1}{\gamma}}{arepsilon^2} ight)$ [BBDD23] ³	

Can we **train** using a number of **samples** scaling polylogarithmically in $\frac{1}{\gamma}$ just like the number of steps?

¹Adam Block, Youssef Mroueh, Alexander Rakhlin (2020)

²Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, Anru R. Zhang (2022)

³Joe Benton, Valentin De Bortoli, Arnaud Doucet, George Deligiannidis (2023)

 Prior works on sampling assume score learned in L². We show that learning the score in L² requires poly(¹/_γ) samples.

- Prior works on sampling assume score learned in L². We show that learning the score in L² requires poly(¹/_γ) samples.
- Nevertheless, we show that it is possible to learn the score in a *weaker* sense using poly log $\left(\frac{1}{\gamma}\right)$ samples. This suffices for efficient sampling.

- Prior works on sampling assume score learned in L². We show that learning the score in L² requires poly(¹/_γ) samples.
- Nevertheless, we show that it is possible to learn the score in a *weaker* sense using poly log $\left(\frac{1}{\gamma}\right)$ samples. This suffices for efficient sampling.

Samples to Train	Steps to Sample	
$poly\left(d, rac{1}{arepsilon}, rac{1}{\gamma}, log\left \mathcal{H} ight ight)$ [BMR20]	$poly\left(d,rac{1}{\gamma},rac{1}{arepsilon} ight)$ [CCL+22]	
$\widetilde{O}\left(rac{d^2}{arepsilon^5}\log^3rac{1}{\gamma}\log \mathcal{H} ight)$ [Ours]	$\widetilde{O}\left(\frac{d\log^2\frac{1}{\gamma}}{\varepsilon^2}\right)$ [BBDD23]	

Only require second moment to be between $\frac{1}{\text{poly}(d)}$ and poly(d).

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

Intuition

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

- To get poly $\log \frac{1}{\gamma}$ dependence for **sampling**, [CLL23]⁴, [BBDD23] observe that score function better behaved with increasing noise. Can tolerate larger score error for small *t*, proportional to $\frac{1}{\min(1,t)}$.
- We exploit this for training show poly log ¹/_γ dependence for sample complexity to learn score*.

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

• Learning the score in L^2 requires poly $\left(\frac{1}{\gamma}\right)$ samples, can learn score in weaker sense with poly log $\frac{1}{\gamma}$ dependence for fast sampling

- Learning the score in L^2 requires poly $\left(\frac{1}{\gamma}\right)$ samples, can learn score in weaker sense with poly log $\frac{1}{\gamma}$ dependence for fast sampling
- Proof exploits the fact that we need weaker approximations for small *t*, and that scores are better behaved as *t* increases.

- Learning the score in L^2 requires poly $\left(\frac{1}{\gamma}\right)$ samples, can learn score in weaker sense with poly log $\frac{1}{\gamma}$ dependence for fast sampling
- Proof exploits the fact that we need weaker approximations for small *t*, and that scores are better behaved as *t* increases.

Samples to Train	Steps to Sample	
$poly\left(d, rac{1}{arepsilon}, rac{1}{\gamma}, log\left \mathcal{H} ight ight)$ [BMR20]	$poly\left(d,rac{1}{\gamma},rac{1}{arepsilon} ight)$ [CCL+22]	
$\widetilde{O}\left(rac{d^2}{arepsilon^5}\log^3rac{1}{\gamma}\log \mathcal{H} ight)$ [Ours]	$\widetilde{O}\left(rac{d\log^2 rac{1}{\gamma}}{arepsilon^2} ight)$ [BBDD23]	