Diffusion

• Diffusion has become the most successful method for image generation, serving as backbone for DALL-E, Midjourney, Stable Diffusion

Diffusion

• Diffusion has become the most successful method for image generation, serving as backbone for DALL-E, Midjourney, Stable Diffusion

• Have a complicated distribution (say over images) q_0 , would like to learn the distribution and then sample from it

• Idea: Add noise to training images, learn how to denoise

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• Idea: Add *noise* to training images, learn how to *denoise*

• Formally, consider the forward SDE

$$
dx_t = -x_t dt + \sqrt{2} dB_t, \quad x_0 \sim q_0
$$

where B_t is Brownian motion.

• There is an associated reverse SDE – depends on score function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.

- There is an associated reverse SDE depends on **score** function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.
- Strategy:
	- 1. Train score model. Done via ERM on the score-matching objective, which minimizes L^2 error with infinite samples.
	- 2. Sample using score estimates. Requires discretizing the reverse SDE.
- There is an associated reverse SDE depends on **score** function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.
- Strategy:
	- 1. Train score model. Done via ERM on the score-matching objective, which minimizes L^2 error with infinite samples.
	- 2. Sample using score estimates. Requires discretizing the reverse SDE.
- Natural questions: How many samples to train? How many discretization steps?
- There is an associated reverse SDE depends on **score** function $s_t = \nabla \log q_t$. Gives a way of sampling if s_t known.
- Strategy:
	- 1. Train score model. Done via ERM on the score-matching objective, which minimizes L^2 error with infinite samples.
	- 2. Sample using score estimates. Requires discretizing the reverse SDE.
- Natural questions: How many samples to train? How many discretization steps?
- Remarkably, both these quantities have good theoretical bounds

Prior Work

• For γ -Wasserstein error, ε -TV error, and hypothesis class H,

¹ Adam Block, Youssef Mroueh, Alexander Rakhlin (2020)

²Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, Anru R. Zhang (2022)

 3 Joe Benton, Valentin De Bortoli, Arnaud Doucet, George Deligiannidis (2023)

• For γ -Wasserstein error, ε -TV error, and hypothesis class H,

¹ Adam Block, Youssef Mroueh, Alexander Rakhlin (2020)

²Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, Anru R. Zhang (2022)

 3 Joe Benton, Valentin De Bortoli, Arnaud Doucet, George Deligiannidis (2023)

• For γ -Wasserstein error, ε -TV error, and hypothesis class H,

Can we train using a number of samples scaling polylogarithmically in $\frac{1}{\gamma}$ just like the number of steps?

 3 Joe Benton, Valentin De Bortoli, Arnaud Doucet, George Deligiannidis (2023)

¹ Adam Block, Youssef Mroueh, Alexander Rakhlin (2020)

²Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, Anru R. Zhang (2022)

 \bullet Prior works on sampling assume score learned in L^2 . We show that learning the score in \mathcal{L}^2 *requires* poly $(\frac{1}{\gamma})$ samples.

- \bullet Prior works on sampling assume score learned in L^2 . We show that learning the score in \mathcal{L}^2 *requires* poly $(\frac{1}{\gamma})$ samples.
- Nevertheless, we show that it is possible to learn the score in a weaker sense using poly log $\left(\frac{1}{\gamma}\right)$ $\left(\frac{1}{\gamma}\right)$ samples. This suffices for efficient sampling.
- \bullet Prior works on sampling assume score learned in L^2 . We show that learning the score in \mathcal{L}^2 *requires* poly $(\frac{1}{\gamma})$ samples.
- Nevertheless, we show that it is possible to learn the score in a weaker sense using poly log $\left(\frac{1}{\gamma}\right)$ $\left(\frac{1}{\gamma}\right)$ samples. This suffices for efficient sampling.

Only require second moment to be between $\frac{1}{\text{poly}(d)}$ and $\text{poly}(d).$

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

Intuition

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

Intuition

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

- \bullet To get polyllog $\frac{1}{\gamma}$ dependence for $\mathsf{sampling}$, [CLL23] 4 , [BBDD23] observe that score function better behaved with increasing noise. Can tolerate larger score error for small t , proportional to $\frac{1}{\min(1,t)}.$
- $\bullet\,$ We exploit this for $\sf{training}$ show poly log $\frac{1}{\gamma}$ dependence for sample complexity to learn score[∗] .

⁴Hongrui Chen, Holden Lee, Jianfeng Lu (2023)

^{*}In a weaker sense than L^2 , but sufficient for sampling

• Learning the score in L^2 requires poly $\left(\frac{1}{\gamma}\right)$ $\left(\frac{1}{\gamma}\right)$ samples, can learn score in weaker sense with poly log $\frac{1}{\gamma}$ dependence for fast sampling

- Learning the score in L^2 requires poly $\left(\frac{1}{\gamma}\right)$ $\left(\frac{1}{\gamma}\right)$ samples, can learn score in weaker sense with poly log $\frac{1}{\gamma}$ dependence for fast sampling
- Proof exploits the fact that we need weaker approximations for small t, and that scores are better behaved as t increases.
- Learning the score in L^2 requires poly $\left(\frac{1}{\gamma}\right)$ $\left(\frac{1}{\gamma}\right)$ samples, can learn score in weaker sense with poly log $\frac{1}{\gamma}$ dependence for fast sampling
- Proof exploits the fact that we need weaker approximations for small t , and that scores are better behaved as t increases.

