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Forward and Reverse SDE

• Idea: Add noise to training images, learn how to denoise

• Formally, consider the forward SDE

dxt = −xtdt +
√
2dBt , x0 ∼ q0

where Bt is Brownian motion.
Here xt ∼ e−tx0 +N (0, (1− e−2t)Id). Converges to N (0, Id).
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Forward and Reverse SDE

• There is an associated reverse SDE – depends on score function
st = ∇ log qt . Gives a way of sampling if st known.

• Strategy:

1. Train score model. Done via ERM on the score-matching objective,
which minimizes L2 error with infinite samples.

2. Sample using score estimates. Requires discretizing the reverse SDE.

• Natural questions: How many samples to train? How many
discretization steps?

• Remarkably, both these quantities have good theoretical bounds
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Prior Work

• For γ-Wasserstein error, ε-TV error, and hypothesis class H,

Samples to Train Steps to Sample
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)
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Can we train using a number of samples scaling polylogarithmically in 1
γ

just like the number of steps?

1Adam Block, Youssef Mroueh, Alexander Rakhlin (2020)
2Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, Anru R. Zhang (2022)
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Our Results

• Prior works on sampling assume score learned in L2. We show that
learning the score in L2 requires poly( 1γ ) samples.

• Nevertheless, we show that it is possible to learn the score in a weaker

sense using poly log
(

1
γ

)
samples. This suffices for efficient sampling.

Samples to Train Steps to Sample
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Only require second moment to be between 1
poly(d) and poly(d).
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Intuition

0 0

• To get poly log 1
γ dependence for sampling, [CLL23]4, [BBDD23]

observe that score function better behaved with increasing noise. Can
tolerate larger score error for small t, proportional to 1

min(1,t) .

• We exploit this for training – show poly log 1
γ dependence for sample

complexity to learn score∗.

4Hongrui Chen, Holden Lee, Jianfeng Lu (2023)
∗In a weaker sense than L2, but sufficient for sampling
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Conclusion

• Learning the score in L2 requires poly
(

1
γ

)
samples, can learn score in

weaker sense with poly log 1
γ dependence for fast sampling

• Proof exploits the fact that we need weaker approximations for small
t, and that scores are better behaved as t increases.
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