Finite-Sample Symmetric Mean Estimation with

 Fisher Information RateShivam Gupta (UT Austin),
Jasper C.H. Lee (UW-Madison),
Eric Price (UT Austin)

July 18, 2023

Asymptotic Mean Estimation

- Given n samples from a distribution, want to estimate mean μ.

Asymptotic Mean Estimation

- Given n samples from a distribution, want to estimate mean μ.

	Estimator	Converges to	Notes
Unknown Distribution	Empirical Mean	$\mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$	Central Limit Theorem
Known Distribution	MLE	$\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$	\mathcal{I} is the Fisher Information
Unknown Symmetric Distribution	$\mathrm{KDE}+\mathrm{MLE}$	$\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$	[Stone; 1975]

Table: Classical Asymptotic Results

Asymptotic Mean Estimation

- Given n samples from a distribution, want to estimate mean μ.

	Estimator	Converges to	Notes
Unknown Distribution	Empirical Mean	$\mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$	Central Limit Theorem
Known Distribution	MLE	$\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$	\mathcal{I} is the Fisher Information
Unknown Symmetric Distribution	KDE + MLE	$\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$	[Stone; 1975]

Table: Classical Asymptotic Results

- In finite-sample setting, when distribution is unknown, [Catoni; 2012], [Lee, Valiant; 2022] show estimator $\widehat{\mu}$ such that with probability $1-\delta$,

$$
|\widehat{\mu}-\mu| \leq \sqrt{\frac{2 \sigma^{2} \log \frac{2}{\delta}}{n}}(1+o(1))
$$

Asymptotic Mean Estimation

- Given n samples from a distribution, want to estimate mean μ.

	Estimator	Converges to	Notes
Unknown Distribution	Empirical Mean	$\mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$	Central Limit Theorem
Known Distribution	MLE	$\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$	\mathcal{I} is the Fisher Information
Unknown Symmetric Distribution	KDE + MLE	$\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$	[Stone; 1975]

Table: Classical Asymptotic Results

- In finite-sample setting, when distribution is unknown, [Catoni; 2012], [Lee, Valiant; 2022] show estimator $\widehat{\mu}$ such that with probability $1-\delta$,

$$
|\widehat{\mu}-\mu| \leq \sqrt{\frac{2 \sigma^{2} \log \frac{2}{\delta}}{n}}(1+o(1))
$$

- Natural Question: What if distribution is known/symmetric?

Location Estimation (Known Distribution Case)

Density

Samples

Location Estimation (Known Distribution Case)

- Fit density to samples, aka Maximum Likelihood Estimate (MLE)

Location Estimation (Known Distribution Case)

- Fit density to samples, aka Maximum Likelihood Estimate (MLE)
- Converges to $\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$ where \mathcal{I} is the Fisher information

Location Estimation (Known Distribution Case)

- Fit density to samples, aka Maximum Likelihood Estimate (MLE)
- Converges to $\mathcal{N}\left(\mu, \frac{1}{n \mathcal{I}}\right)$ where \mathcal{I} is the Fisher information

$\frac{1}{\mathcal{I}}=\sigma^{2}$

$\frac{1}{\mathcal{I}}=\frac{\sigma^{2}}{2}$

$\frac{1}{\mathcal{I}} \ll \sigma^{2}$

Finite-Sample Setting

- In finite-sample setting, might expect $|\hat{\mu}-\mu| \leq \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}}}$

Finite-Sample Setting

- In finite-sample setting, might expect $|\hat{\mu}-\mu| \leq \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}}}$
- Unfortunately, impossible!

Finite-Sample Setting

- In finite-sample setting, might expect $|\hat{\mu}-\mu| \leq \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}}}$
- Unfortunately, impossible!

- Solution: smoothing [G., Lee, Price, Valiant; NeurIPS 2022] Smooth samples and distribution with a radius $r \approx \sigma / n^{1 / 6}$ Gaussian, then run MLE. With probability $1-\delta$,

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}_{r}}}(1+o(1))
$$

Finite-Sample Setting

- In finite-sample setting, might expect $|\hat{\mu}-\mu| \leq \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}}}$
- Unfortunately, impossible!

- Solution: smoothing [G., Lee, Price, Valiant; NeurIPS 2022] Smooth samples and distribution with a radius $r \approx \sigma / n^{1 / 6}$ Gaussian, then run MLE. With probability $1-\delta$,

$$
|\hat{\mu}-\mu| \leq \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}_{r}}}(1+o(1))
$$

Finite-Sample Mean Estimation

	Error	Notes
Unknown Distribution	$\sqrt{\frac{2 \sigma^{2} \log \frac{2}{\delta}}{n}}$	[Cat12, LV22]
Known Distribution	$\sqrt{\frac{2 \log \frac{2}{\delta}}{n I_{r}}}$	[GLPV22], \mathcal{I}_{r} is the smoothed Fisher Information
Unknown Symmetric Distribution	$\sqrt{\frac{2 \log \frac{2}{\delta}}{n I_{r}}}$	This paper

Table: Finite-Sample Results

Finite-Sample Mean Estimation

	Error	Notes
Unknown Distribution	$\sqrt{\frac{2 \sigma^{2} \log \frac{2}{\delta}}{n}}$	[Cat12, LV22]
Known Distribution	$\sqrt{\frac{2 \log \frac{2}{\delta}}{n I_{r}}}$	[GLPV22], \mathcal{I}_{r} is the smoothed Fisher Information
Unknown Symmetric Distribution	$\sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}_{r}}}$	This paper

Table: Finite-Sample Results

Main Theorem (Informal)

For $r \approx \sigma / n^{1 / 13}$, our estimator $\widehat{\mu}$ given n samples from a symmetric distribution satisfies, with probability $1-\delta$,

$$
|\widehat{\mu}-\mu| \leq(1+o(1)) \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}_{r}}}
$$

The $o(1)$ depends on δ, n, but is independent of the distribution.

Kernel Density Estimate

- If we knew the density, we could run (smoothed) MLE

Kernel Density Estimate

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say) $n^{1 / 100}$ samples

Kernel Density Estimate

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say) $n^{1 / 100}$ samples

Kernel Density Estimate

Kernel Density Estimate

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say) $n^{1 / 100}$ samples

Kernel Density Estimate

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say) $n^{1 / 100}$ samples

Kernel Density Estimate

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say) $n^{1 / 100}$ samples

- Naive algorithm: Run (smoothed) MLE on the KDE/Find zero of KDE score using remaining samples.

Kernel Density Estimate

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say) $n^{1 / 100}$ samples

- Naive algorithm: Run (smoothed) MLE on the KDE/Find zero of KDE score using remaining samples. Two issues:

1. Bias
2. Variance

Bias and Variance from KDE

Bias and Variance from KDE

Variance

Correcting the KDE - Bias

- For a symmetric distribution, MLE with respect to any (possibly different) symmetric distribution is an unbiased estimator

Correcting the KDE - Bias

- For a symmetric distribution, MLE with respect to any (possibly different) symmetric distribution is an unbiased estimator
- Idea: (Anti)-symmetrize the KDE score.

Correcting the KDE - Bias

- For a symmetric distribution, MLE with respect to any (possibly different) symmetric distribution is an unbiased estimator
- Idea: (Anti)-symmetrize the KDE score.

Correcting the KDE - Bias

- For a symmetric distribution, MLE with respect to any (possibly different) symmetric distribution is an unbiased estimator
- Idea: (Anti)-symmetrize the KDE score.

Correcting the KDE - Variance

Variance

Correcting the KDE - Variance

- The true score is close to 0 near the small bumps

Correcting the KDE - Variance

- The true score is close to 0 near the small bumps
- Solution: Clip the score

High-Level Summary

- Use the first (say) $n^{1 / 100}$ samples to compute the KDE

High-Level Summary

- Use the first (say) $n^{1 / 100}$ samples to compute the KDE
- Symmetrize and clip the KDE score appropriately

High-Level Summary

- Use the first (say) $n^{1 / 100}$ samples to compute the KDE
- Symmetrize and clip the KDE score appropriately
- Run (variant of) smoothed MLE using the symmetrized and clipped KDE score

High-Level Summary

- Use the first (say) $n^{1 / 100}$ samples to compute the KDE
- Symmetrize and clip the KDE score appropriately
- Run (variant of) smoothed MLE using the symmetrized and clipped KDE score

Main Theorem (Informal)

For $r \approx \sigma / n^{1 / 13}$, our estimator $\widehat{\mu}$ given n samples from a symmetric distribution satisfies, with probability $1-\delta$,

$$
|\widehat{\mu}-\mu| \leq(1+o(1)) \sqrt{\frac{2 \log \frac{2}{\delta}}{n \mathcal{I}_{r}}}
$$

The $o(1)$ depends on δ, n, but is independent of the distribution.

