# Finite-Sample Symmetric Mean Estimation with Fisher Information Rate

Shivam Gupta (UT Austin), Jasper C.H. Lee (UW–Madison), Eric Price (UT Austin)

July 18, 2023

• Given n samples from a distribution, want to estimate mean  $\mu$ .

• Given n samples from a distribution, want to estimate mean  $\mu$ .

|                                | Estimator      | Converges to                               | Notes                                |
|--------------------------------|----------------|--------------------------------------------|--------------------------------------|
| Unknown Distribution           | Empirical Mean | $\mathcal{N}(\mu, \frac{\sigma^2}{n})$     | Central Limit Theorem                |
| Known Distribution             | MLE            | $\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$ | ${\cal I}$ is the Fisher Information |
| Unknown Symmetric Distribution | KDE + MLE      | $\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$ | [Stone; 1975]                        |

Table: Classical Asymptotic Results

• Given n samples from a distribution, want to estimate mean  $\mu$ .

|                                | Estimator      | Converges to                               | Notes                                |
|--------------------------------|----------------|--------------------------------------------|--------------------------------------|
| Unknown Distribution           | Empirical Mean | $\mathcal{N}(\mu, \frac{\sigma^2}{n})$     | Central Limit Theorem                |
| Known Distribution             | MLE            | $\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$ | ${\cal I}$ is the Fisher Information |
| Unknown Symmetric Distribution | KDE + MLE      | $\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$ | [Stone; 1975]                        |

Table: Classical Asymptotic Results

• In *finite-sample* setting, when distribution is **unknown**, [Catoni; 2012], [Lee, Valiant; 2022] show estimator  $\widehat{\mu}$  such that with probability  $1-\delta$ ,

$$|\widehat{\mu} - \mu| \leq \sqrt{rac{2\sigma^2\lograc{2}{\delta}}{n}}(1 + o(1))$$

• Given n samples from a distribution, want to estimate mean  $\mu$ .

|                                | Estimator      | Converges to                               | Notes                                |
|--------------------------------|----------------|--------------------------------------------|--------------------------------------|
| Unknown Distribution           | Empirical Mean | $\mathcal{N}(\mu, \frac{\sigma^2}{n})$     | Central Limit Theorem                |
| Known Distribution             | MLE            | $\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$ | ${\cal I}$ is the Fisher Information |
| Unknown Symmetric Distribution | KDE + MLE      | $\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$ | [Stone; 1975]                        |

Table: Classical Asymptotic Results

• In *finite-sample* setting, when distribution is **unknown**, [Catoni; 2012], [Lee, Valiant; 2022] show estimator  $\widehat{\mu}$  such that with probability  $1-\delta$ ,

$$|\widehat{\mu} - \mu| \leq \sqrt{rac{2\sigma^2\lograc{2}{\delta}}{n}}(1 + o(1))$$

• Natural Question: What if distribution is known/symmetric?









• Fit density to samples, aka Maximum Likelihood Estimate (MLE)





- Fit density to samples, aka Maximum Likelihood Estimate (MLE)
- Converges to  $\mathcal{N}(\mu, \frac{1}{p\mathcal{I}})$  where  $\mathcal{I}$  is the Fisher information





- Fit density to samples, aka Maximum Likelihood Estimate (MLE)
- Converges to  $\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$  where  $\mathcal{I}$  is the Fisher information







$$\frac{1}{\mathcal{I}} = \frac{\sigma^2}{2}$$



$$\frac{1}{\mathcal{I}} \ll \sigma^2$$

• In *finite-sample* setting, might expect  $|\hat{\mu} - \mu| \leq \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$ 

- In *finite-sample* setting, might expect  $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$
- Unfortunately, impossible!



- In *finite-sample* setting, might expect  $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$
- Unfortunately, impossible!



• Solution: smoothing [G., Lee, Price, Valiant; NeurIPS 2022] Smooth samples and distribution with a radius  $r \approx \sigma/n^{1/6}$  Gaussian, then run MLE. With probability  $1-\delta$ ,

$$|\hat{\mu} - \mu| \leq \sqrt{rac{2\lograc{2}{\delta}}{n\mathcal{I}_r}}(1 + o(1))$$

- In *finite-sample* setting, might expect  $|\hat{\mu} \mu| \leq \sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}}}$
- Unfortunately, impossible!





• Solution: smoothing [G., Lee, Price, Valiant; NeurIPS 2022] Smooth samples and distribution with a radius  $r \approx \sigma/n^{1/6}$  Gaussian, then run MLE. With probability  $1-\delta$ ,

$$|\hat{\mu} - \mu| \leq \sqrt{rac{2\lograc{2}{\delta}}{n\mathcal{I}_r}}(1+o(1))$$

# Finite-Sample Mean Estimation

|                                | Error                                                 | Notes                                                               |
|--------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|
| Unknown Distribution           | $\sqrt{\frac{2\sigma^2\log\frac{2}{\delta}}{n}}$      | [Cat12, LV22]                                                       |
| Known Distribution             | $\sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}_r}}$ | [GLPV22], $\mathcal{I}_r$ is the <i>smoothed</i> Fisher Information |
| Unknown Symmetric Distribution | $\sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}_r}}$ | This paper                                                          |

 $Table: \ Finite-Sample \ Results$ 

#### Finite-Sample Mean Estimation

|                                | Error                                                 | Notes                                                               |
|--------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|
| Unknown Distribution           | $\sqrt{\frac{2\sigma^2\log\frac{2}{\delta}}{n}}$      | [Cat12, LV22]                                                       |
| Known Distribution             | $\sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}_r}}$ | [GLPV22], $\mathcal{I}_r$ is the <i>smoothed</i> Fisher Information |
| Unknown Symmetric Distribution | $\sqrt{\frac{2\log\frac{2}{\delta}}{n\mathcal{I}_r}}$ | This paper                                                          |

Table: Finite-Sample Results

#### Main Theorem (Informal)

For  $r \approx \sigma/n^{1/13}$ , our estimator  $\widehat{\mu}$  given n samples from a *symmetric* distribution satisfies, with probability  $1 - \delta$ ,

$$|\widehat{\mu} - \mu| \leq (1 + o(1)) \sqrt{\frac{2\log \frac{2}{\delta}}{n\mathcal{I}_r}}$$

The o(1) depends on  $\delta$ , n, but is independent of the distribution.

• If we knew the density, we could run (smoothed) MLE

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say)  $n^{1/100}$  samples

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say)  $n^{1/100}$  samples



- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say)  $n^{1/100}$  samples



- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say)  $n^{1/100}$  samples





- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say)  $n^{1/100}$  samples





 Naive algorithm: Run (smoothed) MLE on the KDE/Find zero of KDE score using remaining samples.

- If we knew the density, we could run (smoothed) MLE
- Since we don't know the density, let's try to estimate it using the Kernel Density Estimate (KDE) on the first (say)  $n^{1/100}$  samples





- Naive algorithm: Run (smoothed) MLE on the KDE/Find zero of KDE score using remaining samples. Two issues:
  - 1. Bias
  - 2. Variance

#### Bias and Variance from KDE



#### Bias and Variance from KDE





• For a *symmetric* distribution, MLE with respect to *any* (possibly different) symmetric distribution is an unbiased estimator

- For a *symmetric* distribution, MLE with respect to *any* (possibly different) symmetric distribution is an unbiased estimator
- Idea: (Anti)-symmetrize the KDE score.

- For a *symmetric* distribution, MLE with respect to *any* (possibly different) symmetric distribution is an unbiased estimator
- Idea: (Anti)-symmetrize the KDE score.



- For a *symmetric* distribution, MLE with respect to *any* (possibly different) symmetric distribution is an unbiased estimator
- Idea: (Anti)-symmetrize the KDE score.



# Correcting the KDE – Variance





# Correcting the KDE – Variance





• The true score is close to 0 near the small bumps

#### Correcting the KDE – Variance





- The true score is close to 0 near the small bumps
- Solution: Clip the score

• Use the first (say)  $n^{1/100}$  samples to compute the KDE

- Use the first (say)  $n^{1/100}$  samples to compute the KDE
- Symmetrize and clip the KDE score appropriately

- Use the first (say)  $n^{1/100}$  samples to compute the KDE
- Symmetrize and clip the KDE score appropriately
- Run (variant of) smoothed MLE using the symmetrized and clipped KDE score

- Use the first (say)  $n^{1/100}$  samples to compute the KDE
- Symmetrize and clip the KDE score appropriately
- Run (variant of) smoothed MLE using the symmetrized and clipped KDE score

#### Main Theorem (Informal)

For  $r \approx \sigma/n^{1/13}$ , our estimator  $\widehat{\mu}$  given n samples from a *symmetric* distribution satisfies, with probability  $1-\delta$ ,

$$|\widehat{\mu} - \mu| \leq (1 + o(1)) \sqrt{\frac{2\log rac{2}{\delta}}{n\mathcal{I}_r}}$$

The o(1) depends on  $\delta$ , n, but is independent of the distribution.