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Asymptotic Mean Estimation

Given n samples from a distribution, want to estimate mean µ.

Estimator Converges to Notes

Unknown Distribution Empirical Mean N (µ, σ2
n ) Central Limit Theorem

Known Distribution MLE N (µ, 1
nI ) I is the Fisher Information

Unknown Symmetric Distribution KDE + MLE N (µ, 1
nI ) [Stone; 1975]

Table 1. Classical Asymptotic Results

In finite-sample setting, when distribution is unknown, [Catoni; 2012],

[Lee, Valiant; 2022] show estimator µ̂ such that with probability 1 − δ,

|µ̂ − µ| ≤

√
2σ2 log 2

δ

n
(1 + o(1))

Natural Question: What if distribution is known/symmetric?

Location Estimation (Known Distribution Case)
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Finite-Sample Setting: Might expect |µ̂ − µ| ≤

√
2 log 2

δ
nI .

Unfortunately, impossible!

Solution: Smoothing [Gupta, Lee, Price, Valiant; NeurIPS 2022]
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Smooth with radius r ≈ σ/n1/6 Gaussian, then run MLE. With prob. 1 − δ,

|µ̂ − µ| ≤

√
2 log 2
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(1 + o(1))

Finite-Sample Mean Estimation

Error Notes

Unknown Distribution
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n [Cat12, LV22]

Known Distribution
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[GLPV22], Ir is the smoothed Fisher Information

Unknown Symmetric Distribution
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This paper

Table 2. Finite-Sample Results

Main Theorem (Informal): For r ≈ σ/n1/13, our estimator µ̂ given n sam-

ples from a symmetric distribution satisfies, with probability 1 − δ,

|µ̂ − µ| ≤ (1 + o(1))
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The o(1) depends on δ, n, but is independent of the distribution.

Idea: Estimate density using the Kernel Density Estimate (KDE) on the

first (say) n1/100 samples

Density f̂ (x)

0

Score ŝ(x) = d
dx log f̂ (x)

Naive algorithm: Run (smoothed) MLE on the KDE/Find zero of KDE
score using remaining samples. Two issues:
1. Bias

2. Variance
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Variance
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Correcting the KDE – Bias

For a symmetric distribution, MLE with respect to any (possibly

different) symmetric distribution is an unbiased estimator

Idea: Anti-symmetrize the KDE score.
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Score
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Correcting the KDE – Variance

In example, true score is close to 0 near bumps, while estimated score

is large

Solution: Clip the score
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Summary

Use the first (say) n1/100 samples to compute the KDE

Anti-symmetrize and clip the KDE score appropriately

Run (variant of) smoothed MLE using the anti-symmetrized and

clipped KDE score on remaining samples

Main Theorem (Informal): For r ≈ σ/n1/13, our estimator µ̂ given n sam-

ples from a symmetric distribution satisfies, with probability 1 − δ,

|µ̂ − µ| ≤ (1 + o(1))
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