Finite-Sample Symmetric Mean Estimation with Fisher Information Rate

Jasper C.H. Lee²

Asymptotic Mean Estimation

• Given n samples from a distribution, want to estimate mean μ .

	Estimator	Converges to	Notes
Unknown Distribution	Empirical Mean	$\mathcal{N}(\mu, rac{\sigma^2}{n})$	Central Limit Theorem
Known Distribution	MLE	$\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$	${\mathcal I}$ is the Fisher Information
Unknown Symmetric Distribution	KDE + MLE	$\mathcal{N}(\mu, \frac{1}{n\mathcal{I}})$	[Stone; 1975]

 Table 1. Classical Asymptotic Results

• In *finite-sample* setting, when distribution is **unknown**, [Catoni; 2012], [Lee, Valiant; 2022] show estimator $\hat{\mu}$ such that with probability $1 - \delta$,

$$\widehat{\mu} - \mu| \leq \sqrt{\frac{2\sigma^2 \log \frac{2}{\delta}}{n}} (1 + o(1))$$

• **Natural Question:** What if distribution is **known/symmetric**?

Location Estimation (Known Distribution Case)

$$\frac{1}{\overline{L}} \ll \sigma^2$$

- Finite-Sample Setting: Might expect $|\widehat{\mu} \mu| \leq \sqrt{\frac{2\log \frac{2}{\delta}}{n\mathcal{I}}}$. Unfortunately, impossible!
- Solution: Smoothing [Gupta, Lee, Price, Valiant; NeurIPS 2022]

Smooth with radius $r \approx \sigma/n^{1/6}$ Gaussian, then run MLE. With prob. $1 - \delta$,

$$|\widehat{\mu} - \mu| \le \sqrt{\frac{2\log \frac{2}{\delta}}{n\mathcal{I}_r}}(1 + o(1))$$

Shivam Gupta¹

¹The University of Texas at Austin

²University of Wisconsin–Madison

Eric Price¹

Finite-Sample Mean Estimation

 Table 2. Finite-Sample Results

Main Theorem (Informal): For $r \approx \sigma/n^{1/13}$, our estimator $\hat{\mu}$ given n samples from a symmetric distribution satisfies, with probability $1 - \delta$,

$$|\widehat{\mu} - \mu| \le (1 + o(1)) \sqrt{\frac{2\log \frac{2}{d}}{n\mathcal{I}_r}}$$

The o(1) depends on δ , n, but is independent of the distribution.

• Idea: Estimate density using the Kernel Density Estimate (KDE) on the first (say) $n^{1/100}$ samples

- Naive algorithm: Run (smoothed) MLE on the KDE/Find zero of KDE score using remaining samples. Two issues:
- 1. Bias
- 2. Variance

COLT 2023

Correcting the KDE – Bias

• For a symmetric distribution, MLE with respect to any (possibly different) symmetric distribution is an unbiased estimator • Idea: Anti-symmetrize the KDE score.

Correcting the KDE – Variance

• In example, true score is close to 0 near bumps, while estimated score is large

• Solution: Clip the score

Summary

• Use the first (say) $n^{1/100}$ samples to compute the KDE Anti-symmetrize and clip the KDE score appropriately Run (variant of) smoothed MLE using the anti-symmetrized and clipped KDE score on remaining samples

Main Theorem (Informal): For $r \approx \sigma/n^{1/13}$, our estimator $\hat{\mu}$ given n samples from a symmetric distribution satisfies, with probability $1 - \delta$,

$$|\widehat{\mu} - \mu| \le (1 + o(1)) \sqrt{\frac{2\log \frac{2}{\delta}}{n\mathcal{I}_r}}$$

shivamgupta@utexas.edu