
Beyond Catoni: Sharper Rates for Heavy-Tailed

and Robust Mean Estimation

Shivam Gupta (UT Austin),
Samuel B. Hopkins (MIT), Eric Price (UT Austin)

1 / 10



One-Dimensional Mean Estimation

• Given n samples x1, . . . , xn from a variance σ2 distribution, would like
to produce an estimate of the mean µ

• When the distribution is Gaussian, the empirical mean is within

σ

√
2 log 1

δ
n of the true mean µ with probability 1− δ. (Chernoff Bound)

• For the general case:

Estimator Error

Empirical Mean σ
√

1
nδ

Median-of-means 19.2 · σ
√

log 1
δ

n

Catoni (2012) σ

√
2 log 1

δ
n · (1 + o(1))

Table: One-dimensional Estimators
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d -Dimensional Heavy-Tailed Estimation

• In d-dimensional estimation, we are given iid samples x1, . . . , xn ∈ Rd ,
with Cov(xi ) ≼ σ2Id and want to compute an estimate of the mean µ.

• For simplicity, we will focus on the σ = 1 case.
Estimator Error Notes

Empirical Mean
√

d
n +

√
2 log 1

δ
n Gaussian/Light-tailed distributions

Catoni (2012) + Net
√

2d
d+1 ·

(
O

(√
d
n

)
+

√
2 log 1

δ
n

)
Any distribution

Catoni (2012) + PAC-Bayes
√

2d
d+1 ·

(√
d
n +

√
2 log 1

δ
n

)
Any distribution

Lee, Valiant (2022)
√

d
n Any distribution, when d ≫ log2 1

δ

Table: Prior Estimators

• When log 1
δ ≫ d , is the

√
2d
d+1 -factor loss over the Gaussian rate

necessary?
• We show that the answer is no – we show an estimator with error

(1− τ) ·
√

2d
d+1 ·

(√
2 log 1

δ
n

)
for a small constant τ > 0.
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Catoni + Net argument

• Suppose, we have an estimate µ̂v = ⟨µ, v⟩ ± ϵ for every unit vector v .

• Taking the center of the enclosing sphere of these confidence regions

is guaranteed to be within
√

2d
d+1 · ϵ of µ in ℓ2 (Jung’s theorem).
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d-Dimensional Heavy-Tailed Estimation

µ

v1

ϵ

v2

ϵ

v3

µ̂

• Using a net argument with Catoni’s estimate in each direction v ,
combined with this argument produces µ̂ with

∥µ̂− µ∥ ≤
√

2d

d + 1
· σ

O

( √
d

n

)
+

√
2 log 1

δ

n


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Variant of Catoni’s One-dimensional Estimator

1. Let µ0 be estimate via Median-of-means on fraction of the n samples

2. With T =
√

n
2 log 1

δ

, refine the estimate:

µ̂ = µ0 +
1

n

n∑
i=1

Tψ

(
xi − µ0

T

)
• When ψ(x) = x , then the estimate µ̂ is just the empirical mean.
• Catoni prescribes a specific way of selecting ψ to downweight outliers

that achieves the optimal σ

√
2 log 1

δ
n error.

• ψ satisfies: − log
(
1− x + x2

2

)
≤ ψ(x) ≤ log

(
1 + x + x2

2

)

0
x

0

ψ
(x

)

x− x3

6 , Clipped

Wide Catoni

Narrow Catoni

Figure: Some ψ functions satisfying Catoni’s constraints
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Variant of Catoni’s One-dimensional Estimator

• Estimate is given by

µ̂ = µ0 + r(µ0) := µ0 +
1

n

n∑
i=1

Tψ

(
xi − µ0

T

)

• Claim: r(µ0) is (µ− µ0)± σ

√
2 log 1

δ
n with probability 1− δ.

• Proof: Its MGF is given by

E
[
exp

( n

T
r(µ0)

)]
=

n∏
i=1

E
[
exp

(
ψ

(
xi − µ0

T

))]

≤
n∏

i=1

E
[(

1 +
xi − µ0

T
+

(xi − µ0)
2

2T 2

)]
since ψ(x) ≤ log(1 + x + x2/2)

≤ exp
( n

T
(µ− µ0) +

n

2T 2
·
[
σ2(1 + o(1))

])
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Towards an improved estimator

0
x

0

− log(1− x + x2

2 )

log(1 + x + x2

2 )

• Catoni uses

− log

(
1− x +

x2

2

)
≤ ψ(x) ≤ log

(
1 + x +

x2

2

)

• There is slack in the choice for outliers
• Taking advantage of the slack gives smaller error when the

distribution has many outliers
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Towards an improved estimator

• Recall: T =
√

n
2 log 1

δ

is the scale of the outliers

• Strategy for two-dimensional estimator: The distribution of xi is
either outlier-heavy, or outlier-light

1. outlier-heavy: Elements less than T/100 contribute less than 99% of
the variance. Then, the Catoni estimate with our improved ψ
constraint has a sharper error rate.

2. Outlier-light: Elements more than T/100 contribute less than 1% of
the variance. So, we can trim samples past this threshold, and
compute an empirical mean.

• In both cases, we achieve an improved rate. We can test which case
we are in using a small fraction of samples.

• A generalization of Jung’s theorem allows us to lift this estimator to
d dimensions with an improved rate.
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Main Theorems

Heavy-Tailed Estimation, Upper Bound

Suppose log 1
δ ≫ d . There is an algorithm that takes n samples in Rd with

covariance of each sample Σ ⪯ σ2I , and outputs an estimate µ̂ with

∥µ̂− µ∥ ≤ (1− τ) ·
√

2d

d + 1
· σ

√
2 log 1

δ

n

with 1− δ probability, for some constant τ > 10−6.

Robust Mean Estimation, Lower Bound

For every d ≥ 1 and ε ≤ 1
2 , every algorithm for robust estimation of

d-dimensional distributions with covariance Σ ⪯ σ2I has error rate

E[∥µ̂− µ∥] ≥
√

2d

d + 1
· (1 + O(ε)) ·

√
2σ2ε

on some input distribution, in the population limit.
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