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One-Dimensional Mean Estimation

® Given n samples xi, ..., x, from a variance o2 distribution, would like
to produce an estimate of the mean u
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One-Dimensional Mean Estimation

® Given n samples xi, ..., x, from a variance o2 distribution, would like
to produce an estimate of the mean u

® When the distribution is Gaussian, the empirical mean is within
1
o\/ 2|°ng 2 of the true mean p with probability 1 — . (Chernoff Bound)

® For the general case:

Estimator Error
Empirical Mean o %
. log 1
Median-of-means 1920 e
. 2Iogl
Catoni (2012) | oy/ 285 - (14 o(1))

Table: One-dimensional Estimators

2/10
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® In d-dimensional estimation, we are given iid samples xi, ..., x, € RY,
with Cov(x;) < 02ly and want to compute an estimate of the mean .

® For simplicity, we will focus on the ¢ =1 case.
Error Notes

Estimator

1
Empirical Mean \/g-'r \/ Zlong = Gaussian/Light-tailed distributions
1
Catoni (2012) + Net | /24 . (o (ﬁ) + \/%> Any distribution
T
Catoni (2012) + PAC-Bayes 1/0,2—51 . (ﬁ+ \/%) Any distribution
d

Lee, Valiant (2022) \/: Any distribution, when d > Iogz%

Table: Prior Estimators

3/10



d-Dimensional Heavy-Tailed Estimation

® In d-dimensional estimation, we are given iid samples xi, ..., x, € RY,
with Cov(x;) < 02ly and want to compute an estimate of the mean .

® For simplicity, we will focus on the ¢ =1 case.
Estimator Error Notes

1
Empirical Mean \/g-'r \ Zlong = Gaussian/Light-tailed distributions
1
Catoni (2012) + Net | /24 . (o (ﬁ) + \/%> Any distribution

1
Catoni (2012) + PAC-Bayes 1/0,2—51 . (ﬁ+ \/%) Any distribution
d
n

Any distribution, when d > Iogz%

Lee, Valiant (2022)

Table: Prior Estimators

® When Iog% > d, is the d2—_|‘:1—factor loss over the Gaussian rate

necessary?

3/10



d-Dimensional Heavy-Tailed Estimation

® In d-dimensional estimation, we are given iid samples xi, ..., x, € RY,
with Cov(x;) < 02ly and want to compute an estimate of the mean .

® For simplicity, we will focus on the ¢ =1 case.
Estimator Error Notes

1
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Catoni (2012) + Net | /24 . (o (ﬁ) + \/%> Any distribution

1
Catoni (2012) + PAC-Bayes 1/0,2—51 . (ﬁ+ \/%) Any distribution
d
n

Any distribution, when d > Iogz%

Lee, Valiant (2022)

Table: Prior Estimators

® When Iog% > d, is the d2—_|‘:1—factor loss over the Gaussian rate

necessary?
® \We show that the answer is no — we show an estimator with error

2log 1
(1-7)- \/dzfl' <\/ of;g 5> for a small constant 7 > 0.
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Catoni + Net argument

® Suppose, we have an estimate ji, = (u, v) £ € for every unit vector v.
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Catoni + Net argument

® Suppose, we have an estimate fi, = (u, v) = € for every unit vector v.

® Taking the center of the enclosing sphere of these confidence regions

is guaranteed to be within ,/(f—fl <€ of puin £3 (Jung's theorem).
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d-Dimensional Heavy-Tailed Estimation

® Using a net argument with Catoni’s estimate in each direction v,
combined with this argument produces [ with

_ 2d d 2log %
— < . -
Wr=nl<yfg77° O(\/n>+ .
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Variant of Catoni's One-dimensional Estimator

1. Let pg be estimate via Median-of-means on fraction of the n samples
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Variant of Catoni's One-dimensional Estimator

1. Let pg be estimate via Median-of-means on fraction of the n samples
2. With T =  /—"+, refine the estimate:

2log 5
— Ho
1= po+ - ZT@ZJ( )

® When 1(x) = x, then the estimate [ is just the empirical mean.
e Catoni prescribes a specific way of selecting ¥ to downweight outliers
2log %

that achieves the optimal o error.

® ¢ satisfies: —log <1 —x+ X;) < (x) < log (1 + x4+ %)
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Variant of Catoni's One-dimensional Estimator

® Estimate is given by

1o Xi — o
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i = po + r(po) uo+n_§1 w( T >
1=
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Variant of Catoni's One-dimensional Estimator

® Estimate is given by

1o Xi — o
~_ — - T i
i= po + r(o) uo+n_§1 w(T >
1=

e Claim: r(up)is (u — po) £ o/ 2log ——2 with probability 1 — 4.
® Proof: Its MGF is given by

] o (57)
< HE K ”0 + (XI;TZO) )] since 1(x) < log(1 + x + x%/2

< exp (7(M — o) + 27;7-2 [o?(1+ 0(1))]>

7/10



Towards an improved estimator

e (Catoni uses

_Iog<1—X+X22> S¢(X)S|Og(1+x+xz2)
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Towards an improved estimator
e gl —z+Z)
———————— log(lerJr'jJ) /

e (Catoni uses

_Iog<1—X+X22> §¢(X)S|Og<1+x+xj>

® There is slack in the choice for outliers
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Towards an improved estimator

-— —log(1 —J'+[j,2)

"""" log(1+ + 'TJ)

= % Clipped

e (Catoni uses
2

—Iog(l—x+X22> S¢(x)§|og<1+x+xz>

® There is slack in the choice for outliers
® Taking advantage of the slack gives smaller error when the

distribution has many outliers
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Towards an improved estimator

® Recall: T = /2|0”g - is the scale of the outliers
5

e Strategy for two-dimensional estimator: The distribution of x; is
either outlier-heavy, or outlier-light
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e Strategy for two-dimensional estimator: The distribution of x; is
either outlier-heavy, or outlier-light

1. outlier-heavy: Elements less than T /100 contribute less than 99% of
the variance. Then, the Catoni estimate with our improved v
constraint has a sharper error rate.

2. Qutlier-light: Elements more than T /100 contribute less than 1% of
the variance. So, we can trim samples past this threshold, and
compute an empirical mean.

® |n both cases, we achieve an improved rate. We can test which case
we are in using a small fraction of samples.

® A generalization of Jung's theorem allows us to lift this estimator to
d dimensions with an improved rate.
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Main Theorems

Heavy-Tailed Estimation, Upper Bound

Suppose Iog% > d. There is an algorithm that takes n samples in R? with
covariance of each sample ¥ < 02/, and outputs an estimate [i with

_ 2d 2log 3
_ < — ) — . —__ 20
lr=pul<@Q=1)\ g7 9\ —,

with 1 — & probability, for some constant 7 > 107°.
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Heavy-Tailed Estimation, Upper Bound

Suppose Iog% > d. There is an algorithm that takes n samples in R? with
covariance of each sample ¥ < 02/, and outputs an estimate [i with

_ 2d 2log 3
_ < — ) — . —__ 20
lr=pul<@Q=1)\ g7 9\ —,

with 1 — & probability, for some constant 7 > 107°.

Robust Mean Estimation, Lower Bound

For every d > 1 and € < % every algorithm for robust estimation of
d-dimensional distributions with covariance ¥ < o?/ has error rate

Ellja - ull 2\ 2o - (14 0() - V2oe

on some input distribution, in the population limit.
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