Beyond Catoni: Sharper Rates for Heavy-Tailed and Robust Mean Estimation

Shivam Gupta (UT Austin), Samuel B. Hopkins (MIT), Eric Price (UT Austin)

One-Dimensional Mean Estimation

• Given *n* samples x_1, \ldots, x_n from a variance σ^2 distribution, would like to produce an estimate of the mean μ

One-Dimensional Mean Estimation

- Given *n* samples x_1, \ldots, x_n from a variance σ^2 distribution, would like to produce an estimate of the mean μ
- When the distribution is **Gaussian**, the empirical mean is within $\sigma\sqrt{\frac{2\log{\frac{1}{\delta}}}{n}}$ of the true mean μ with probability $1-\delta.$ (Chernoff Bound)

One-Dimensional Mean Estimation

- Given *n* samples x_1, \ldots, x_n from a variance σ^2 distribution, would like to produce an estimate of the mean μ
- When the distribution is Gaussian, the empirical mean is within $\sigma\sqrt{\frac{2\log{\frac{1}{\delta}}}{n}}$ of the true mean μ with probability $1-\delta.$ (Chernoff Bound)
- For the general case:

Table: One-dimensional Estimators

• In d-dimensional estimation, we are given iid samples $x_1, \ldots, x_n \in \mathbb{R}^d$, with $\mathsf{Cov}(x_i) \preccurlyeq \sigma^2 I_d$ and want to compute an estimate of the mean $\mu.$

- In d-dimensional estimation, we are given iid samples $x_1, \ldots, x_n \in \mathbb{R}^d$, with $\mathsf{Cov}(x_i) \preccurlyeq \sigma^2 I_d$ and want to compute an estimate of the mean $\mu.$
- For simplicity, we will focus on the $\sigma = 1$ case.

- In d-dimensional estimation, we are given iid samples $x_1, \ldots, x_n \in \mathbb{R}^d$, with $\mathsf{Cov}(x_i) \preccurlyeq \sigma^2 I_d$ and want to compute an estimate of the mean $\mu.$
- For simplicity, we will focus on the $\sigma = 1$ case.

Table: Prior Estimators

- In d-dimensional estimation, we are given iid samples $x_1, \ldots, x_n \in \mathbb{R}^d$, with $\mathsf{Cov}(x_i) \preccurlyeq \sigma^2 I_d$ and want to compute an estimate of the mean $\mu.$
- For simplicity, we will focus on the $\sigma = 1$ case.

Table: Prior Estimators

 $\bullet\,$ When log $\frac{1}{\delta} \gg d$, is the $\sqrt{\frac{2d}{d+1}}$ -factor loss over the Gaussian rate necessary?

- In d-dimensional estimation, we are given iid samples $x_1, \ldots, x_n \in \mathbb{R}^d$, with $\mathsf{Cov}(x_i) \preccurlyeq \sigma^2 I_d$ and want to compute an estimate of the mean $\mu.$
- For simplicity, we will focus on the $\sigma = 1$ case.

Table: Prior Estimators

- $\bullet\,$ When log $\frac{1}{\delta} \gg d$, is the $\sqrt{\frac{2d}{d+1}}$ -factor loss over the Gaussian rate necessary?
- We show that the answer is no we show an estimator with error $(1-\tau)\cdot\sqrt{\frac{2d}{d+1}}$. $\left(\sqrt{\frac{2 \log \frac{1}{\delta}}{n}}\right)$) for a small constant $\tau > 0$.

$\textsf{Catoni} + \textsf{Net argument}$

$\overline{\text{Catoni}} + \text{Net argument}$

$\overline{\text{Catoni}} + \text{Net argument}$

$\overline{\text{Catoni}} + \text{Net argument}$

$\sqrt{$ Catoni + Net argument

• Suppose, we have an estimate $\widehat{\mu}_{\mathbf{v}} = \langle \mu, \mathbf{v} \rangle \pm \epsilon$ for every unit vector \mathbf{v} .

• Taking the center of the enclosing sphere of these confidence regions is guaranteed to be within $\sqrt{\frac{2d}{d+1}} \cdot \epsilon$ of μ in ℓ_2 (Jung's theorem).

• Using a net argument with Catoni's estimate in each direction v, combined with this argument produces $\hat{\mu}$ with

$$
\|\widehat{\mu} - \mu\| \leq \sqrt{\frac{2d}{d+1}} \cdot \sigma \left(O\left(\sqrt{\frac{d}{n}}\right) + \sqrt{\frac{2\log\frac{1}{\delta}}{n}} \right)
$$

5 / 10

1. Let μ_0 be estimate via Median-of-means on fraction of the *n* samples

1. Let μ_0 be estimate via Median-of-means on fraction of the *n* samples 2. With $\mathcal{T} = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$, refine the estimate:

$$
\widehat{\mu} = \mu_0 + \frac{1}{n} \sum_{i=1}^n T \psi \left(\frac{x_i - \mu_0}{T} \right)
$$

1. Let μ_0 be estimate via Median-of-means on fraction of the *n* samples 2. With $\mathcal{T} = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$, refine the estimate:

$$
\widehat{\mu} = \mu_0 + \frac{1}{n} \sum_{i=1}^n T \psi \left(\frac{x_i - \mu_0}{T} \right)
$$

• When $\psi(x) = x$, then the estimate $\hat{\mu}$ is just the empirical mean.

1. Let μ_0 be estimate via Median-of-means on fraction of the *n* samples 2. With $\mathcal{T} = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$, refine the estimate:

$$
\widehat{\mu} = \mu_0 + \frac{1}{n} \sum_{i=1}^n T \psi \left(\frac{x_i - \mu_0}{T} \right)
$$

- When $\psi(x) = x$, then the estimate $\hat{\mu}$ is just the empirical mean.
- Catoni prescribes a specific way of selecting ψ to downweight outliers that achieves the optimal $\sigma\sqrt{\frac{2\log\frac{1}{\delta}}{n}}$ error.

1. Let μ_0 be estimate via Median-of-means on fraction of the *n* samples 2. With $\mathcal{T} = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}$, refine the estimate:

$$
\widehat{\mu} = \mu_0 + \frac{1}{n} \sum_{i=1}^n T \psi \left(\frac{x_i - \mu_0}{T} \right)
$$

- When $\psi(x) = x$, then the estimate $\hat{\mu}$ is just the empirical mean.
- Catoni prescribes a specific way of selecting ψ to downweight outliers that achieves the optimal $\sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$ error.
- ψ satisfies: $-\log\left(1-x+\frac{x^2}{2}\right)$ $\left(\frac{x^2}{2}\right) \leq \psi(x) \leq \log\left(1+x+\frac{x^2}{2}\right)$ $\left(\frac{x^2}{2}\right)$

• Estimate is given by

$$
\widehat{\mu} = \mu_0 + r(\mu_0) := \mu_0 + \frac{1}{n} \sum_{i=1}^n T \psi \left(\frac{x_i - \mu_0}{T} \right)
$$

• Estimate is given by

$$
\widehat{\mu} = \mu_0 + r(\mu_0) := \mu_0 + \frac{1}{n} \sum_{i=1}^n T \psi \left(\frac{x_i - \mu_0}{T} \right)
$$

• Claim: $r(\mu_0)$ is $(\mu - \mu_0) \pm \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$ with probability $1 - \delta$.

• Estimate is given by

$$
\widehat{\mu} = \mu_0 + r(\mu_0) := \mu_0 + \frac{1}{n} \sum_{i=1}^n T \psi \left(\frac{x_i - \mu_0}{T} \right)
$$

- Claim: $r(\mu_0)$ is $(\mu \mu_0) \pm \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$ with probability 1δ .
- Proof: Its MGF is given by

$$
\mathbb{E}\left[\exp\left(\frac{n}{T}r(\mu_0)\right)\right] = \prod_{i=1}^n \mathbb{E}\left[\exp\left(\psi\left(\frac{x_i - \mu_0}{T}\right)\right)\right]
$$
\n
$$
\leq \prod_{i=1}^n \mathbb{E}\left[\left(1 + \frac{x_i - \mu_0}{T} + \frac{(x_i - \mu_0)^2}{2T^2}\right)\right] \text{ since } \psi(x) \leq \log(1 + x + x^2/2)
$$
\n
$$
\leq \exp\left(\frac{n}{T}(\mu - \mu_0) + \frac{n}{2T^2} \cdot \left[\sigma^2(1 + o(1))\right]\right)
$$

• Catoni uses

$$
-\log\left(1-x+\frac{x^2}{2}\right) \leq \psi(x) \leq \log\left(1+x+\frac{x^2}{2}\right)
$$

• Catoni uses

$$
-\log\left(1-x+\frac{x^2}{2}\right)\leq\psi(x)\leq\log\left(1+x+\frac{x^2}{2}\right)
$$

• There is slack in the choice for outliers

• Catoni uses

$$
-\log\left(1-x+\frac{x^2}{2}\right)\leq\psi(x)\leq\log\left(1+x+\frac{x^2}{2}\right)
$$

- There is slack in the choice for outliers
- Taking advantage of the slack gives smaller error when the distribution has many outliers

• Recall:
$$
T = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}
$$
 is the *scale* of the outliers

• Strategy for two-dimensional estimator: The distribution of x_i is either outlier-heavy, or outlier-light

• Recall:
$$
T = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}
$$
 is the *scale* of the outliers

- Strategy for two-dimensional estimator: The distribution of x_i is either outlier-heavy, or outlier-light
	- 1. **outlier-heavy**: Elements less than $T/100$ contribute less than 99% of the variance. Then, the Catoni estimate with our improved ψ constraint has a sharper error rate.

• Recall:
$$
T = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}
$$
 is the *scale* of the outliers

- Strategy for two-dimensional estimator: The distribution of x_i is either outlier-heavy, or outlier-light
	- 1. **outlier-heavy**: Elements less than $T/100$ contribute less than 99% of the variance. Then, the Catoni estimate with our improved ψ constraint has a sharper error rate.
	- 2. **Outlier-light**: Elements more than $T/100$ contribute less than 1% of the variance. So, we can trim samples past this threshold, and compute an empirical mean.

• Recall:
$$
T = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}
$$
 is the *scale* of the outliers

- Strategy for two-dimensional estimator: The distribution of x_i is either outlier-heavy, or outlier-light
	- 1. **outlier-heavy**: Elements less than $T/100$ contribute less than 99% of the variance. Then, the Catoni estimate with our improved ψ constraint has a sharper error rate.
	- 2. **Outlier-light**: Elements more than $T/100$ contribute less than 1% of the variance. So, we can *trim* samples past this threshold, and compute an empirical mean.
- In both cases, we achieve an improved rate. We can test which case we are in using a small fraction of samples.

• Recall:
$$
T = \sqrt{\frac{n}{2 \log \frac{1}{\delta}}}
$$
 is the *scale* of the outliers

- Strategy for two-dimensional estimator: The distribution of x_i is either outlier-heavy, or outlier-light
	- 1. **outlier-heavy**: Elements less than $T/100$ contribute less than 99% of the variance. Then, the Catoni estimate with our improved ψ constraint has a sharper error rate.
	- 2. **Outlier-light**: Elements more than $T/100$ contribute less than 1% of the variance. So, we can *trim* samples past this threshold, and compute an empirical mean.
- In both cases, we achieve an improved rate. We can test which case we are in using a small fraction of samples.
- A generalization of Jung's theorem allows us to lift this estimator to d dimensions with an **improved rate**.

Main Theorems

Heavy-Tailed Estimation, Upper Bound

Suppose log $\frac{1}{2} \gg d$. There is an algorithm that takes *n* samples in \mathbb{R}^d with covariance of each sample $\Sigma \preceq \sigma^2 I$, and outputs an estimate $\widehat{\mu}$ with

$$
\|\widehat{\mu} - \mu\| \leq (1-\tau) \cdot \sqrt{\frac{2d}{d+1}} \cdot \sigma \sqrt{\frac{2\log{\frac{1}{\delta}}}{n}}
$$

with $1 - \delta$ probability, for some constant $\tau > 10^{-6}$.

Heavy-Tailed Estimation, Upper Bound

Suppose log $\frac{1}{2} \gg d$. There is an algorithm that takes *n* samples in \mathbb{R}^d with covariance of each sample $\Sigma \preceq \sigma^2 I$, and outputs an estimate $\widehat{\mu}$ with

$$
\|\widehat{\mu} - \mu\| \leq (1-\tau) \cdot \sqrt{\frac{2d}{d+1}} \cdot \sigma \sqrt{\frac{2\log{\frac{1}{\delta}}}{n}}
$$

with $1 - \delta$ probability, for some constant $\tau > 10^{-6}$.

Robust Mean Estimation, Lower Bound

For every $d \geq 1$ and $\varepsilon \leq \frac{1}{2}$ $\frac{1}{2}$, every algorithm for robust estimation of d-dimensional distributions with covariance $\Sigma \preceq \sigma^2 I$ has error rate

$$
\mathbb{E}[\|\widehat{\mu} - \mu\|] \geq \sqrt{\frac{2d}{d+1}} \cdot (1 + O(\varepsilon)) \cdot \sqrt{2\sigma^2 \varepsilon}
$$

on some input distribution, in the population limit.